Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,73 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
import numpy as np
|
|
|
|
|
4 |
import torch
|
|
|
5 |
import random
|
|
|
6 |
from diffusers import FluxInpaintPipeline
|
7 |
from PIL import Image
|
8 |
|
|
|
9 |
MAX_SEED = np.iinfo(np.int32).max
|
10 |
MAX_IMAGE_SIZE = 2048
|
11 |
|
12 |
-
|
13 |
-
pipe = FluxInpaintPipeline.from_pretrained(
|
14 |
-
"black-forest-labs/FLUX.1-Fill-dev"
|
15 |
-
# torch_dtype=torch.bfloat16
|
16 |
-
).to("cuda")
|
17 |
pipe.load_lora_weights("alvdansen/flux-koda")
|
|
|
|
|
18 |
pipe.enable_lora()
|
19 |
-
pipe.vae.enable_slicing()
|
20 |
-
pipe.vae.enable_tiling()
|
21 |
|
22 |
def calculate_optimal_dimensions(image: Image.Image):
|
|
|
23 |
original_width, original_height = image.size
|
|
|
|
|
24 |
MIN_ASPECT_RATIO = 9 / 16
|
25 |
MAX_ASPECT_RATIO = 16 / 9
|
26 |
FIXED_DIMENSION = 1024
|
27 |
|
|
|
28 |
original_aspect_ratio = original_width / original_height
|
29 |
|
30 |
-
|
|
|
31 |
width = FIXED_DIMENSION
|
32 |
height = round(FIXED_DIMENSION / original_aspect_ratio)
|
33 |
-
else:
|
34 |
height = FIXED_DIMENSION
|
35 |
width = round(FIXED_DIMENSION * original_aspect_ratio)
|
36 |
|
|
|
37 |
width = (width // 8) * 8
|
38 |
height = (height // 8) * 8
|
39 |
|
|
|
40 |
calculated_aspect_ratio = width / height
|
41 |
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
42 |
width = (height * MAX_ASPECT_RATIO // 8) * 8
|
43 |
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
44 |
height = (width / MIN_ASPECT_RATIO // 8) * 8
|
45 |
|
|
|
46 |
width = max(width, 576) if width == FIXED_DIMENSION else width
|
47 |
height = max(height, 576) if height == FIXED_DIMENSION else height
|
48 |
|
49 |
return width, height
|
50 |
|
51 |
-
@spaces.GPU
|
52 |
-
def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28):
|
|
|
|
|
53 |
image = edit_images["background"]
|
54 |
width, height = calculate_optimal_dimensions(image)
|
55 |
mask = edit_images["layers"][0]
|
56 |
if randomize_seed:
|
57 |
seed = random.randint(0, MAX_SEED)
|
58 |
-
|
59 |
-
# Run the inpainting pipeline
|
60 |
-
output = pipe(
|
61 |
prompt=prompt,
|
62 |
image=image,
|
63 |
mask_image=mask,
|
@@ -66,15 +76,23 @@ def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height
|
|
66 |
guidance_scale=guidance_scale,
|
67 |
num_inference_steps=num_inference_steps,
|
68 |
generator=torch.Generator(device='cuda').manual_seed(seed),
|
69 |
-
|
|
|
70 |
|
71 |
-
|
72 |
-
output_image_jpg = output_image.convert("RGB")
|
73 |
output_image_jpg.save("output.jpg", "JPEG")
|
74 |
|
75 |
return output_image_jpg, seed
|
|
|
76 |
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
#col-container {
|
79 |
margin: 0 auto;
|
80 |
max-width: 1000px;
|
@@ -82,44 +100,87 @@ css = """
|
|
82 |
"""
|
83 |
|
84 |
with gr.Blocks(css=css) as demo:
|
|
|
85 |
with gr.Column(elem_id="col-container"):
|
86 |
-
gr.Markdown("# FLUX.1 [dev]
|
|
|
87 |
with gr.Row():
|
88 |
with gr.Column():
|
89 |
edit_image = gr.ImageEditor(
|
90 |
-
label=
|
91 |
-
type=
|
92 |
sources=["upload", "webcam"],
|
93 |
-
image_mode=
|
94 |
-
layers=
|
95 |
brush=gr.Brush(colors=["#FFFFFF"]),
|
|
|
96 |
)
|
97 |
-
prompt = gr.
|
98 |
label="Prompt",
|
99 |
show_label=False,
|
100 |
max_lines=2,
|
101 |
placeholder="Enter your prompt",
|
|
|
102 |
)
|
103 |
run_button = gr.Button("Run")
|
104 |
|
105 |
result = gr.Image(label="Result", show_label=False)
|
106 |
|
107 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
108 |
seed = gr.Slider(
|
109 |
-
label="Seed",
|
|
|
|
|
|
|
|
|
110 |
)
|
|
|
111 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
112 |
-
guidance_scale = gr.Slider(
|
113 |
-
label="Guidance Scale", minimum=1, maximum=30, step=0.5, value=3.5
|
114 |
-
)
|
115 |
-
num_inference_steps = gr.Slider(
|
116 |
-
label="Number of inference steps", minimum=1, maximum=50, step=1, value=28
|
117 |
-
)
|
118 |
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
)
|
124 |
|
125 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
+
|
4 |
+
import spaces
|
5 |
import torch
|
6 |
+
import spaces
|
7 |
import random
|
8 |
+
|
9 |
from diffusers import FluxInpaintPipeline
|
10 |
from PIL import Image
|
11 |
|
12 |
+
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 2048
|
15 |
|
16 |
+
pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
|
|
|
|
|
|
|
|
|
17 |
pipe.load_lora_weights("alvdansen/flux-koda")
|
18 |
+
# pipe.enable_sequential_cpu_offload()
|
19 |
+
# pipe.enable_fp16()
|
20 |
pipe.enable_lora()
|
21 |
+
# pipe.vae.enable_slicing()
|
22 |
+
# pipe.vae.enable_tiling()
|
23 |
|
24 |
def calculate_optimal_dimensions(image: Image.Image):
|
25 |
+
# Extract the original dimensions
|
26 |
original_width, original_height = image.size
|
27 |
+
|
28 |
+
# Set constants
|
29 |
MIN_ASPECT_RATIO = 9 / 16
|
30 |
MAX_ASPECT_RATIO = 16 / 9
|
31 |
FIXED_DIMENSION = 1024
|
32 |
|
33 |
+
# Calculate the aspect ratio of the original image
|
34 |
original_aspect_ratio = original_width / original_height
|
35 |
|
36 |
+
# Determine which dimension to fix
|
37 |
+
if original_aspect_ratio > 1: # Wider than tall
|
38 |
width = FIXED_DIMENSION
|
39 |
height = round(FIXED_DIMENSION / original_aspect_ratio)
|
40 |
+
else: # Taller than wide
|
41 |
height = FIXED_DIMENSION
|
42 |
width = round(FIXED_DIMENSION * original_aspect_ratio)
|
43 |
|
44 |
+
# Ensure dimensions are multiples of 8
|
45 |
width = (width // 8) * 8
|
46 |
height = (height // 8) * 8
|
47 |
|
48 |
+
# Enforce aspect ratio limits
|
49 |
calculated_aspect_ratio = width / height
|
50 |
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
51 |
width = (height * MAX_ASPECT_RATIO // 8) * 8
|
52 |
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
53 |
height = (width / MIN_ASPECT_RATIO // 8) * 8
|
54 |
|
55 |
+
# Ensure width and height remain above the minimum dimensions
|
56 |
width = max(width, 576) if width == FIXED_DIMENSION else width
|
57 |
height = max(height, 576) if height == FIXED_DIMENSION else height
|
58 |
|
59 |
return width, height
|
60 |
|
61 |
+
@spaces.GPU(durations=300)
|
62 |
+
def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
63 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
64 |
+
|
65 |
image = edit_images["background"]
|
66 |
width, height = calculate_optimal_dimensions(image)
|
67 |
mask = edit_images["layers"][0]
|
68 |
if randomize_seed:
|
69 |
seed = random.randint(0, MAX_SEED)
|
70 |
+
image = pipe(
|
|
|
|
|
71 |
prompt=prompt,
|
72 |
image=image,
|
73 |
mask_image=mask,
|
|
|
76 |
guidance_scale=guidance_scale,
|
77 |
num_inference_steps=num_inference_steps,
|
78 |
generator=torch.Generator(device='cuda').manual_seed(seed),
|
79 |
+
# lora_scale=0.75 // not supported in this version
|
80 |
+
).images[0]
|
81 |
|
82 |
+
output_image_jpg = image.convert("RGB")
|
|
|
83 |
output_image_jpg.save("output.jpg", "JPEG")
|
84 |
|
85 |
return output_image_jpg, seed
|
86 |
+
# return image, seed
|
87 |
|
88 |
+
examples = [
|
89 |
+
"photography of a young woman, accent lighting, (front view:1.4), "
|
90 |
+
# "a tiny astronaut hatching from an egg on the moon",
|
91 |
+
# "a cat holding a sign that says hello world",
|
92 |
+
# "an anime illustration of a wiener schnitzel",
|
93 |
+
]
|
94 |
+
|
95 |
+
css="""
|
96 |
#col-container {
|
97 |
margin: 0 auto;
|
98 |
max-width: 1000px;
|
|
|
100 |
"""
|
101 |
|
102 |
with gr.Blocks(css=css) as demo:
|
103 |
+
|
104 |
with gr.Column(elem_id="col-container"):
|
105 |
+
gr.Markdown(f"""# FLUX.1 [dev]
|
106 |
+
""")
|
107 |
with gr.Row():
|
108 |
with gr.Column():
|
109 |
edit_image = gr.ImageEditor(
|
110 |
+
label='Upload and draw mask for inpainting',
|
111 |
+
type='pil',
|
112 |
sources=["upload", "webcam"],
|
113 |
+
image_mode='RGB',
|
114 |
+
layers=False,
|
115 |
brush=gr.Brush(colors=["#FFFFFF"]),
|
116 |
+
# height=600
|
117 |
)
|
118 |
+
prompt = gr.Text(
|
119 |
label="Prompt",
|
120 |
show_label=False,
|
121 |
max_lines=2,
|
122 |
placeholder="Enter your prompt",
|
123 |
+
container=False,
|
124 |
)
|
125 |
run_button = gr.Button("Run")
|
126 |
|
127 |
result = gr.Image(label="Result", show_label=False)
|
128 |
|
129 |
with gr.Accordion("Advanced Settings", open=False):
|
130 |
+
|
131 |
seed = gr.Slider(
|
132 |
+
label="Seed",
|
133 |
+
minimum=0,
|
134 |
+
maximum=MAX_SEED,
|
135 |
+
step=1,
|
136 |
+
value=0,
|
137 |
)
|
138 |
+
|
139 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
+
with gr.Row():
|
142 |
+
|
143 |
+
width = gr.Slider(
|
144 |
+
label="Width",
|
145 |
+
minimum=256,
|
146 |
+
maximum=MAX_IMAGE_SIZE,
|
147 |
+
step=32,
|
148 |
+
value=1024,
|
149 |
+
visible=False
|
150 |
+
)
|
151 |
+
|
152 |
+
height = gr.Slider(
|
153 |
+
label="Height",
|
154 |
+
minimum=256,
|
155 |
+
maximum=MAX_IMAGE_SIZE,
|
156 |
+
step=32,
|
157 |
+
value=1024,
|
158 |
+
visible=False
|
159 |
+
)
|
160 |
+
|
161 |
+
with gr.Row():
|
162 |
+
|
163 |
+
guidance_scale = gr.Slider(
|
164 |
+
label="Guidance Scale",
|
165 |
+
minimum=1,
|
166 |
+
maximum=30,
|
167 |
+
step=0.5,
|
168 |
+
value=50,
|
169 |
+
)
|
170 |
+
|
171 |
+
num_inference_steps = gr.Slider(
|
172 |
+
label="Number of inference steps",
|
173 |
+
minimum=1,
|
174 |
+
maximum=50,
|
175 |
+
step=1,
|
176 |
+
value=28,
|
177 |
+
)
|
178 |
+
|
179 |
+
gr.on(
|
180 |
+
triggers=[run_button.click, prompt.submit],
|
181 |
+
fn = infer,
|
182 |
+
inputs = [edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
183 |
+
outputs = [result, seed]
|
184 |
)
|
185 |
|
186 |
+
demo.launch()
|