Hammad712's picture
Update main.py
1d61cef verified
raw
history blame
6.72 kB
import os
import torch
import librosa
import numpy as np
import tempfile
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from librosa.sequence import dtw
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import JSONResponse
import shutil
# Define the QuranRecitationComparer class as provided
class QuranRecitationComparer:
def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", auth_token=None):
"""Initialize the Quran recitation comparer with a specific Wav2Vec2 model."""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load model and processor once during initialization
if auth_token:
self.processor = Wav2Vec2Processor.from_pretrained(model_name, token=auth_token)
self.model = Wav2Vec2ForCTC.from_pretrained(model_name, token=auth_token)
else:
self.processor = Wav2Vec2Processor.from_pretrained(model_name)
self.model = Wav2Vec2ForCTC.from_pretrained(model_name)
self.model = self.model.to(self.device)
self.model.eval()
# Cache for embeddings to avoid recomputation
self.embedding_cache = {}
def load_audio(self, file_path, target_sr=16000, trim_silence=True, normalize=True):
"""Load and preprocess an audio file."""
if not os.path.exists(file_path):
raise FileNotFoundError(f"Audio file not found: {file_path}")
y, sr = librosa.load(file_path, sr=target_sr)
if normalize:
y = librosa.util.normalize(y)
if trim_silence:
y, _ = librosa.effects.trim(y, top_db=30)
return y
def get_deep_embedding(self, audio, sr=16000):
"""Extract frame-wise deep embeddings using the pretrained model."""
input_values = self.processor(
audio,
sampling_rate=sr,
return_tensors="pt"
).input_values.to(self.device)
with torch.no_grad():
outputs = self.model(input_values, output_hidden_states=True)
hidden_states = outputs.hidden_states[-1]
embedding_seq = hidden_states.squeeze(0).cpu().numpy()
return embedding_seq
def compute_dtw_distance(self, features1, features2):
"""Compute the DTW distance between two sequences of features."""
D, wp = dtw(X=features1, Y=features2, metric='euclidean')
distance = D[-1, -1]
normalized_distance = distance / len(wp)
return normalized_distance
def interpret_similarity(self, norm_distance):
"""Interpret the normalized distance value."""
if norm_distance == 0:
result = "The recitations are identical based on the deep embeddings."
score = 100
elif norm_distance < 1:
result = "The recitations are extremely similar."
score = 95
elif norm_distance < 5:
result = "The recitations are very similar with minor differences."
score = 80
elif norm_distance < 10:
result = "The recitations show moderate similarity."
score = 60
elif norm_distance < 20:
result = "The recitations show some noticeable differences."
score = 40
else:
result = "The recitations are quite different."
score = max(0, 100 - norm_distance)
return result, score
def get_embedding_for_file(self, file_path):
"""Get embedding for a file, using cache if available."""
if file_path in self.embedding_cache:
return self.embedding_cache[file_path]
audio = self.load_audio(file_path)
embedding = self.get_deep_embedding(audio)
# Store in cache for future use
self.embedding_cache[file_path] = embedding
return embedding
def predict(self, file_path1, file_path2):
"""
Predict the similarity between two audio files.
This method can be called repeatedly without reloading the model.
"""
# Get embeddings (using cache if available)
embedding1 = self.get_embedding_for_file(file_path1)
embedding2 = self.get_embedding_for_file(file_path2)
# Compute DTW distance (transposing so that each column represents a frame)
norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)
# Interpret results
interpretation, similarity_score = self.interpret_similarity(norm_distance)
print(f"Similarity Score: {similarity_score:.1f}/100")
print(f"Interpretation: {interpretation}")
return similarity_score, interpretation
def clear_cache(self):
"""Clear the embedding cache to free memory."""
self.embedding_cache = {}
# Create FastAPI application
app = FastAPI(
title="Quran Recitation Comparison API",
description="API for comparing similarity between Quran recitations",
version="1.0.0"
)
# Global instance of the comparer
comparer = None
@app.on_event("startup")
async def startup_event():
global comparer
# Optionally, set the HF authentication token from an environment variable
auth_token = os.getenv("HF_TOKEN", None)
comparer = QuranRecitationComparer(auth_token=auth_token)
print("Model initialized and ready for predictions.")
# Root endpoint
@app.get("/")
async def root():
return {"message": "Welcome to the Quran Recitation Comparison API"}
# Compare endpoint that accepts two audio files
@app.post("/compare")
async def compare_recitations(file1: UploadFile = File(...), file2: UploadFile = File(...)):
if comparer is None:
raise HTTPException(status_code=503, detail="Model not initialized")
try:
# Save the uploaded files to temporary files
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp1:
tmp1.write(await file1.read())
file_path1 = tmp1.name
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp2:
tmp2.write(await file2.read())
file_path2 = tmp2.name
# Use the comparer to predict similarity
similarity_score, interpretation = comparer.predict(file_path1, file_path2)
# Clean up temporary files
os.remove(file_path1)
os.remove(file_path2)
return {"similarity_score": similarity_score, "interpretation": interpretation}
except Exception as e:
raise HTTPException(status_code=400, detail=str(e))
# Run the application with uvicorn if this module is executed directly.
if __name__ == "__main__":
import uvicorn
uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=False)