import os import torch import librosa import numpy as np import tempfile from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC from librosa.sequence import dtw from fastapi import FastAPI, UploadFile, File, HTTPException from fastapi.responses import JSONResponse import shutil # Define the QuranRecitationComparer class as provided class QuranRecitationComparer: def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", auth_token=None): """Initialize the Quran recitation comparer with a specific Wav2Vec2 model.""" self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load model and processor once during initialization if auth_token: self.processor = Wav2Vec2Processor.from_pretrained(model_name, token=auth_token) self.model = Wav2Vec2ForCTC.from_pretrained(model_name, token=auth_token) else: self.processor = Wav2Vec2Processor.from_pretrained(model_name) self.model = Wav2Vec2ForCTC.from_pretrained(model_name) self.model = self.model.to(self.device) self.model.eval() # Cache for embeddings to avoid recomputation self.embedding_cache = {} def load_audio(self, file_path, target_sr=16000, trim_silence=True, normalize=True): """Load and preprocess an audio file.""" if not os.path.exists(file_path): raise FileNotFoundError(f"Audio file not found: {file_path}") y, sr = librosa.load(file_path, sr=target_sr) if normalize: y = librosa.util.normalize(y) if trim_silence: y, _ = librosa.effects.trim(y, top_db=30) return y def get_deep_embedding(self, audio, sr=16000): """Extract frame-wise deep embeddings using the pretrained model.""" input_values = self.processor( audio, sampling_rate=sr, return_tensors="pt" ).input_values.to(self.device) with torch.no_grad(): outputs = self.model(input_values, output_hidden_states=True) hidden_states = outputs.hidden_states[-1] embedding_seq = hidden_states.squeeze(0).cpu().numpy() return embedding_seq def compute_dtw_distance(self, features1, features2): """Compute the DTW distance between two sequences of features.""" D, wp = dtw(X=features1, Y=features2, metric='euclidean') distance = D[-1, -1] normalized_distance = distance / len(wp) return normalized_distance def interpret_similarity(self, norm_distance): """Interpret the normalized distance value.""" if norm_distance == 0: result = "The recitations are identical based on the deep embeddings." score = 100 elif norm_distance < 1: result = "The recitations are extremely similar." score = 95 elif norm_distance < 5: result = "The recitations are very similar with minor differences." score = 80 elif norm_distance < 10: result = "The recitations show moderate similarity." score = 60 elif norm_distance < 20: result = "The recitations show some noticeable differences." score = 40 else: result = "The recitations are quite different." score = max(0, 100 - norm_distance) return result, score def get_embedding_for_file(self, file_path): """Get embedding for a file, using cache if available.""" if file_path in self.embedding_cache: return self.embedding_cache[file_path] audio = self.load_audio(file_path) embedding = self.get_deep_embedding(audio) # Store in cache for future use self.embedding_cache[file_path] = embedding return embedding def predict(self, file_path1, file_path2): """ Predict the similarity between two audio files. This method can be called repeatedly without reloading the model. """ # Get embeddings (using cache if available) embedding1 = self.get_embedding_for_file(file_path1) embedding2 = self.get_embedding_for_file(file_path2) # Compute DTW distance (transposing so that each column represents a frame) norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T) # Interpret results interpretation, similarity_score = self.interpret_similarity(norm_distance) print(f"Similarity Score: {similarity_score:.1f}/100") print(f"Interpretation: {interpretation}") return similarity_score, interpretation def clear_cache(self): """Clear the embedding cache to free memory.""" self.embedding_cache = {} # Create FastAPI application app = FastAPI( title="Quran Recitation Comparison API", description="API for comparing similarity between Quran recitations", version="1.0.0" ) # Global instance of the comparer comparer = None @app.on_event("startup") async def startup_event(): global comparer # Optionally, set the HF authentication token from an environment variable auth_token = os.getenv("HF_TOKEN", None) comparer = QuranRecitationComparer(auth_token=auth_token) print("Model initialized and ready for predictions.") # Root endpoint @app.get("/") async def root(): return {"message": "Welcome to the Quran Recitation Comparison API"} # Compare endpoint that accepts two audio files @app.post("/compare") async def compare_recitations(file1: UploadFile = File(...), file2: UploadFile = File(...)): if comparer is None: raise HTTPException(status_code=503, detail="Model not initialized") try: # Save the uploaded files to temporary files with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp1: tmp1.write(await file1.read()) file_path1 = tmp1.name with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp2: tmp2.write(await file2.read()) file_path2 = tmp2.name # Use the comparer to predict similarity similarity_score, interpretation = comparer.predict(file_path1, file_path2) # Clean up temporary files os.remove(file_path1) os.remove(file_path2) return {"similarity_score": similarity_score, "interpretation": interpretation} except Exception as e: raise HTTPException(status_code=400, detail=str(e)) # Run the application with uvicorn if this module is executed directly. if __name__ == "__main__": import uvicorn uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=False)