File size: 6,722 Bytes
46a11a0
 
 
 
 
1d61cef
 
 
 
46a11a0
 
1d61cef
 
 
 
 
ef20d33
1d61cef
 
 
 
 
 
 
ef20d33
1d61cef
 
ef20d33
1d61cef
 
 
 
 
 
 
ef20d33
46a11a0
1d61cef
46a11a0
 
1d61cef
46a11a0
 
1d61cef
46a11a0
1d61cef
 
 
 
 
 
46a11a0
1d61cef
 
46a11a0
1d61cef
 
46a11a0
 
1d61cef
46a11a0
1d61cef
 
 
 
46a11a0
 
 
1d61cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46a11a0
1d61cef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0318876
1d61cef
46a11a0
1d61cef
 
 
46a11a0
 
1d61cef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import os
import torch
import librosa
import numpy as np
import tempfile
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
from librosa.sequence import dtw
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import JSONResponse
import shutil

# Define the QuranRecitationComparer class as provided
class QuranRecitationComparer:
    def __init__(self, model_name="jonatasgrosman/wav2vec2-large-xlsr-53-arabic", auth_token=None):
        """Initialize the Quran recitation comparer with a specific Wav2Vec2 model."""
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

        # Load model and processor once during initialization
        if auth_token:
            self.processor = Wav2Vec2Processor.from_pretrained(model_name, token=auth_token)
            self.model = Wav2Vec2ForCTC.from_pretrained(model_name, token=auth_token)
        else:
            self.processor = Wav2Vec2Processor.from_pretrained(model_name)
            self.model = Wav2Vec2ForCTC.from_pretrained(model_name)

        self.model = self.model.to(self.device)
        self.model.eval()

        # Cache for embeddings to avoid recomputation
        self.embedding_cache = {}

    def load_audio(self, file_path, target_sr=16000, trim_silence=True, normalize=True):
        """Load and preprocess an audio file."""
        if not os.path.exists(file_path):
            raise FileNotFoundError(f"Audio file not found: {file_path}")

        y, sr = librosa.load(file_path, sr=target_sr)

        if normalize:
            y = librosa.util.normalize(y)

        if trim_silence:
            y, _ = librosa.effects.trim(y, top_db=30)

        return y

    def get_deep_embedding(self, audio, sr=16000):
        """Extract frame-wise deep embeddings using the pretrained model."""
        input_values = self.processor(
            audio,
            sampling_rate=sr,
            return_tensors="pt"
        ).input_values.to(self.device)

        with torch.no_grad():
            outputs = self.model(input_values, output_hidden_states=True)

        hidden_states = outputs.hidden_states[-1]
        embedding_seq = hidden_states.squeeze(0).cpu().numpy()

        return embedding_seq

    def compute_dtw_distance(self, features1, features2):
        """Compute the DTW distance between two sequences of features."""
        D, wp = dtw(X=features1, Y=features2, metric='euclidean')
        distance = D[-1, -1]
        normalized_distance = distance / len(wp)
        return normalized_distance

    def interpret_similarity(self, norm_distance):
        """Interpret the normalized distance value."""
        if norm_distance == 0:
            result = "The recitations are identical based on the deep embeddings."
            score = 100
        elif norm_distance < 1:
            result = "The recitations are extremely similar."
            score = 95
        elif norm_distance < 5:
            result = "The recitations are very similar with minor differences."
            score = 80
        elif norm_distance < 10:
            result = "The recitations show moderate similarity."
            score = 60
        elif norm_distance < 20:
            result = "The recitations show some noticeable differences."
            score = 40
        else:
            result = "The recitations are quite different."
            score = max(0, 100 - norm_distance)

        return result, score

    def get_embedding_for_file(self, file_path):
        """Get embedding for a file, using cache if available."""
        if file_path in self.embedding_cache:
            return self.embedding_cache[file_path]

        audio = self.load_audio(file_path)
        embedding = self.get_deep_embedding(audio)

        # Store in cache for future use
        self.embedding_cache[file_path] = embedding

        return embedding

    def predict(self, file_path1, file_path2):
        """
        Predict the similarity between two audio files.
        This method can be called repeatedly without reloading the model.
        """
        # Get embeddings (using cache if available)
        embedding1 = self.get_embedding_for_file(file_path1)
        embedding2 = self.get_embedding_for_file(file_path2)

        # Compute DTW distance (transposing so that each column represents a frame)
        norm_distance = self.compute_dtw_distance(embedding1.T, embedding2.T)

        # Interpret results
        interpretation, similarity_score = self.interpret_similarity(norm_distance)

        print(f"Similarity Score: {similarity_score:.1f}/100")
        print(f"Interpretation: {interpretation}")

        return similarity_score, interpretation

    def clear_cache(self):
        """Clear the embedding cache to free memory."""
        self.embedding_cache = {}

# Create FastAPI application
app = FastAPI(
    title="Quran Recitation Comparison API",
    description="API for comparing similarity between Quran recitations",
    version="1.0.0"
)

# Global instance of the comparer
comparer = None

@app.on_event("startup")
async def startup_event():
    global comparer
    # Optionally, set the HF authentication token from an environment variable
    auth_token = os.getenv("HF_TOKEN", None)
    comparer = QuranRecitationComparer(auth_token=auth_token)
    print("Model initialized and ready for predictions.")

# Root endpoint
@app.get("/")
async def root():
    return {"message": "Welcome to the Quran Recitation Comparison API"}

# Compare endpoint that accepts two audio files
@app.post("/compare")
async def compare_recitations(file1: UploadFile = File(...), file2: UploadFile = File(...)):
    if comparer is None:
        raise HTTPException(status_code=503, detail="Model not initialized")

    try:
        # Save the uploaded files to temporary files
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp1:
            tmp1.write(await file1.read())
            file_path1 = tmp1.name
        with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp2:
            tmp2.write(await file2.read())
            file_path2 = tmp2.name

        # Use the comparer to predict similarity
        similarity_score, interpretation = comparer.predict(file_path1, file_path2)

        # Clean up temporary files
        os.remove(file_path1)
        os.remove(file_path2)

        return {"similarity_score": similarity_score, "interpretation": interpretation}

    except Exception as e:
        raise HTTPException(status_code=400, detail=str(e))

# Run the application with uvicorn if this module is executed directly.
if __name__ == "__main__":
    import uvicorn
    uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=False)