Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import re | |
import os | |
import json | |
import yaml | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import plotnine as p9 | |
import sys | |
sys.path.append('./src') | |
sys.path.append('.') | |
from huggingface_hub import HfApi | |
repo_id = "HUBioDataLab/PROBE" | |
api = HfApi() | |
from src.about import * | |
from src.saving_utils import * | |
from src.vis_utils import * | |
from src.bin.PROBE import run_probe | |
# ------------------------------------------------------------------ | |
# Helper functions moved / added here so that UI callbacks can see them | |
# ------------------------------------------------------------------ | |
def add_new_eval( | |
human_file, | |
skempi_file, | |
model_name_textbox: str, | |
revision_name_textbox: str, | |
benchmark_types, | |
similarity_tasks, | |
function_prediction_aspect, | |
function_prediction_dataset, | |
family_prediction_dataset, | |
save, | |
): | |
"""Validate inputs, run evaluation and (optionally) save results.""" | |
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None: | |
gr.Warning("Human representations are required for similarity, family, or function benchmarks!") | |
return -1 | |
if 'affinity' in benchmark_types and skempi_file is None: | |
gr.Warning("SKEMPI representations are required for affinity benchmark!") | |
return -1 | |
gr.Info("Your submission is being processed…") | |
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox | |
try: | |
results = run_probe( | |
benchmark_types, | |
representation_name, | |
human_file, | |
skempi_file, | |
similarity_tasks, | |
function_prediction_aspect, | |
function_prediction_dataset, | |
family_prediction_dataset, | |
) | |
except Exception: | |
gr.Warning("Your submission has not been processed. Please check your representation files!") | |
return -1 | |
if save: | |
save_results(representation_name, benchmark_types, results) | |
gr.Info("Your submission has been processed and results are saved!") | |
else: | |
gr.Info("Your submission has been processed!") | |
return 0 | |
def refresh_data(): | |
"""Re‑start the space and pull fresh leaderboard CSVs from the HF Hub.""" | |
api.restart_space(repo_id=repo_id) | |
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"] | |
for benchmark_type in benchmark_types: | |
path = f"/tmp/{benchmark_type}_results.csv" | |
if os.path.exists(path): | |
os.remove(path) | |
benchmark_types.remove("leaderboard") | |
download_from_hub(benchmark_types) | |
# ------- Leaderboard helpers ------------------------------------------------- | |
def update_metrics(selected_benchmarks): | |
"""Populate metric selector according to chosen benchmark types.""" | |
updated_metrics = set() | |
for benchmark in selected_benchmarks: | |
updated_metrics.update(benchmark_metric_mapping.get(benchmark, [])) | |
return list(updated_metrics) | |
def update_leaderboard(selected_methods, selected_metrics): | |
updated_df = get_baseline_df(selected_methods, selected_metrics) | |
return updated_df | |
# ------- Visualisation helpers ---------------------------------------------- | |
def get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric): | |
"""Return a short natural‑language explanation for the produced plot.""" | |
if benchmark_type == "similarity": | |
return ( | |
f"The scatter plot compares models on **{x_metric}** (x‑axis) and " | |
f"**{y_metric}** (y‑axis). Points further to the upper‑right indicate better " | |
"performance on both metrics." | |
) | |
elif benchmark_type == "function": | |
return ( | |
f"The heat‑map shows performance of each model (columns) across GO terms " | |
f"for the **{aspect.upper()}** aspect using the **{single_metric}** metric. " | |
"Darker squares correspond to stronger performance; hierarchical clustering " | |
"groups similar models and tasks together." | |
) | |
elif benchmark_type == "family": | |
return ( | |
f"The horizontal box‑plots summarise cross‑validation performance on the " | |
f"**{dataset}** dataset. Higher median MCC values indicate better family‑" | |
"classification accuracy." | |
) | |
elif benchmark_type == "affinity": | |
return ( | |
f"Each box‑plot shows the distribution of **{single_metric}** scores for every " | |
"model when predicting binding affinity changes. Higher values are better." | |
) | |
return "" | |
def generate_plot_and_explanation( | |
benchmark_type, | |
methods_selected, | |
x_metric, | |
y_metric, | |
aspect, | |
dataset, | |
single_metric, | |
): | |
"""Callback wrapper that returns both the image path and a textual explanation.""" | |
plot_path = benchmark_plot( | |
benchmark_type, | |
methods_selected, | |
x_metric, | |
y_metric, | |
aspect, | |
dataset, | |
single_metric, | |
) | |
explanation = get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric) | |
return plot_path, explanation | |
# ------------------------------------------------------------------ | |
# UI definition | |
# ------------------------------------------------------------------ | |
block = gr.Blocks() | |
with block: | |
gr.Markdown(LEADERBOARD_INTRODUCTION) | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
# ------------------------------------------------------------------ | |
# 1️⃣ Leaderboard tab | |
# ------------------------------------------------------------------ | |
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1): | |
leaderboard = get_baseline_df(None, None) # baseline leaderboard without filtering | |
method_names = leaderboard['Method'].unique().tolist() | |
metric_names = leaderboard.columns.tolist() | |
metric_names.remove('Method') # remove non‑metric column | |
benchmark_metric_mapping = { | |
"similarity": [m for m in metric_names if m.startswith('sim_')], | |
"function": [m for m in metric_names if m.startswith('func')], | |
"family": [m for m in metric_names if m.startswith('fam_')], | |
"affinity": [m for m in metric_names if m.startswith('aff_')], | |
} | |
# selectors ----------------------------------------------------- | |
leaderboard_method_selector = gr.CheckboxGroup( | |
choices=method_names, | |
label="Select Methods for the Leaderboard", | |
value=method_names, | |
interactive=True, | |
) | |
benchmark_type_selector_lb = gr.CheckboxGroup( | |
choices=list(benchmark_metric_mapping.keys()), | |
label="Select Benchmark Types", | |
value=None, | |
interactive=True, | |
) | |
leaderboard_metric_selector = gr.CheckboxGroup( | |
choices=metric_names, | |
label="Select Metrics for the Leaderboard", | |
value=None, | |
interactive=True, | |
) | |
# leaderboard table -------------------------------------------- | |
baseline_value = get_baseline_df(method_names, metric_names) | |
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x) | |
baseline_header = ["Method"] + metric_names | |
baseline_datatype = ['markdown'] + ['number'] * len(metric_names) | |
with gr.Row(show_progress=True, variant='panel'): | |
data_component = gr.Dataframe( | |
value=baseline_value, | |
headers=baseline_header, | |
type="pandas", | |
datatype=baseline_datatype, | |
interactive=False, | |
visible=True, | |
) | |
# callbacks ----------------------------------------------------- | |
leaderboard_method_selector.change( | |
get_baseline_df, | |
inputs=[leaderboard_method_selector, leaderboard_metric_selector], | |
outputs=data_component, | |
) | |
benchmark_type_selector_lb.change( | |
lambda selected: update_metrics(selected), | |
inputs=[benchmark_type_selector_lb], | |
outputs=leaderboard_metric_selector, | |
) | |
leaderboard_metric_selector.change( | |
get_baseline_df, | |
inputs=[leaderboard_method_selector, leaderboard_metric_selector], | |
outputs=data_component, | |
) | |
# ------------------------------------------------------------------ | |
# 2️⃣ Visualisation tab | |
# ------------------------------------------------------------------ | |
with gr.TabItem("📊 Visualization", elem_id="probe-benchmark-tab-visualization", id=2): | |
# Intro / instructions | |
gr.Markdown( | |
""" | |
## **Interactive Visualizations** | |
Select a benchmark type first; context‑specific options will appear automatically. | |
Once your parameters are set, click **Plot** to generate the figure. | |
**How to read the plots** | |
* **Similarity (scatter)** – Each point is a model. Points nearer the top‑right perform well on both chosen similarity metrics. | |
* **Function prediction (heat‑map)** – Darker squares denote better scores. Rows/columns are clustered to reveal shared structure. | |
* **Family / Affinity (boxplots)** – Boxes summarise distribution across folds/targets. Higher medians indicate stronger performance. | |
""", | |
elem_classes="markdown-text", | |
) | |
# ------------------------------------------------------------------ | |
# selectors specific to visualisation | |
# ------------------------------------------------------------------ | |
vis_benchmark_type_selector = gr.Dropdown( | |
choices=list(benchmark_specific_metrics.keys()), | |
label="Select Benchmark Type", | |
value=None, | |
) | |
with gr.Row(): | |
vis_x_metric_selector = gr.Dropdown(choices=[], label="Select X‑axis Metric", visible=False) | |
vis_y_metric_selector = gr.Dropdown(choices=[], label="Select Y‑axis Metric", visible=False) | |
vis_aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False) | |
vis_dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False) | |
vis_single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False) | |
vis_method_selector = gr.CheckboxGroup( | |
choices=method_names, | |
label="Select methods to visualize", | |
interactive=True, | |
value=method_names, | |
) | |
plot_button = gr.Button("Plot") | |
with gr.Row(show_progress=True, variant='panel'): | |
plot_output = gr.Image(label="Plot") | |
# textual explanation below the image | |
plot_explanation = gr.Markdown(visible=False) | |
# ------------------------------------------------------------------ | |
# callbacks for visualisation tab | |
# ------------------------------------------------------------------ | |
vis_benchmark_type_selector.change( | |
update_metric_choices, | |
inputs=[vis_benchmark_type_selector], | |
outputs=[ | |
vis_x_metric_selector, | |
vis_y_metric_selector, | |
vis_aspect_type_selector, | |
vis_dataset_selector, | |
vis_single_metric_selector, | |
], | |
) | |
plot_button.click( | |
generate_plot_and_explanation, | |
inputs=[ | |
vis_benchmark_type_selector, | |
vis_method_selector, | |
vis_x_metric_selector, | |
vis_y_metric_selector, | |
vis_aspect_type_selector, | |
vis_dataset_selector, | |
vis_single_metric_selector, | |
], | |
outputs=[plot_output, plot_explanation], | |
) | |
# ------------------------------------------------------------------ | |
# 3️⃣ About tab | |
# ------------------------------------------------------------------ | |
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=3): | |
with gr.Row(): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Image( | |
value="./src/data/PROBE_workflow_figure.jpg", | |
label="PROBE Workflow Figure", | |
elem_classes="about-image", | |
) | |
# ------------------------------------------------------------------ | |
# 4️⃣ Submit tab | |
# ------------------------------------------------------------------ | |
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=4): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Method name") | |
revision_name_textbox = gr.Textbox(label="Revision Method Name") | |
benchmark_types = gr.CheckboxGroup( | |
choices=TASK_INFO, | |
label="Benchmark Types", | |
interactive=True, | |
) | |
similarity_tasks = gr.CheckboxGroup( | |
choices=similarity_tasks_options, | |
label="Similarity Tasks", | |
interactive=True, | |
) | |
function_prediction_aspect = gr.Radio( | |
choices=function_prediction_aspect_options, | |
label="Function Prediction Aspects", | |
interactive=True, | |
) | |
family_prediction_dataset = gr.CheckboxGroup( | |
choices=family_prediction_dataset_options, | |
label="Family Prediction Datasets", | |
interactive=True, | |
) | |
function_dataset = gr.Textbox( | |
label="Function Prediction Datasets", | |
visible=False, | |
value="All_Data_Sets", | |
) | |
save_checkbox = gr.Checkbox( | |
label="Save results for leaderboard and visualization", | |
value=True, | |
) | |
with gr.Row(): | |
human_file = gr.File(label="Representation file (CSV) for Human dataset", file_count="single", type='filepath') | |
skempi_file = gr.File(label="Representation file (CSV) for SKEMPI dataset", file_count="single", type='filepath') | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
inputs=[ | |
human_file, | |
skempi_file, | |
model_name_textbox, | |
revision_name_textbox, | |
benchmark_types, | |
similarity_tasks, | |
function_prediction_aspect, | |
function_dataset, | |
family_prediction_dataset, | |
save_checkbox, | |
], | |
) | |
# ---------------------------------------------------------------------- | |
# global refresh button & citation accordion | |
# ---------------------------------------------------------------------- | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click(refresh_data, outputs=[data_component]) | |
with gr.Accordion("Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
# ----------------------------------------------------------------------------- | |
block.launch() | |