Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
import re
|
@@ -22,6 +20,9 @@ from src.saving_utils import *
|
|
22 |
from src.vis_utils import *
|
23 |
from src.bin.PROBE import run_probe
|
24 |
|
|
|
|
|
|
|
25 |
|
26 |
def add_new_eval(
|
27 |
human_file,
|
@@ -35,6 +36,7 @@ def add_new_eval(
|
|
35 |
family_prediction_dataset,
|
36 |
save,
|
37 |
):
|
|
|
38 |
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
|
39 |
gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
|
40 |
return -1
|
@@ -43,27 +45,36 @@ def add_new_eval(
|
|
43 |
gr.Warning("SKEMPI representations are required for affinity benchmark!")
|
44 |
return -1
|
45 |
|
46 |
-
|
47 |
|
48 |
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
|
49 |
|
50 |
try:
|
51 |
-
results = run_probe(
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
return -1
|
55 |
|
56 |
-
|
57 |
if save:
|
58 |
save_results(representation_name, benchmark_types, results)
|
59 |
-
|
60 |
-
|
61 |
else:
|
62 |
-
|
63 |
|
64 |
return 0
|
65 |
|
|
|
66 |
def refresh_data():
|
|
|
67 |
api.restart_space(repo_id=repo_id)
|
68 |
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
|
69 |
|
@@ -75,63 +86,130 @@ def refresh_data():
|
|
75 |
benchmark_types.remove("leaderboard")
|
76 |
download_from_hub(benchmark_types)
|
77 |
|
78 |
-
|
|
|
|
|
79 |
def update_metrics(selected_benchmarks):
|
|
|
80 |
updated_metrics = set()
|
81 |
for benchmark in selected_benchmarks:
|
82 |
updated_metrics.update(benchmark_metric_mapping.get(benchmark, []))
|
83 |
return list(updated_metrics)
|
84 |
-
|
85 |
-
|
86 |
def update_leaderboard(selected_methods, selected_metrics):
|
87 |
updated_df = get_baseline_df(selected_methods, selected_metrics)
|
88 |
return updated_df
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
block = gr.Blocks()
|
91 |
|
92 |
with block:
|
93 |
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
94 |
-
|
95 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
|
|
|
|
|
|
96 |
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
|
|
|
97 |
|
98 |
-
leaderboard = get_baseline_df(None, None) #get baseline leaderboard without filtering
|
99 |
-
|
100 |
method_names = leaderboard['Method'].unique().tolist()
|
101 |
metric_names = leaderboard.columns.tolist()
|
102 |
-
|
103 |
-
metric_names.remove('Method') # Remove method_name from the metric options
|
104 |
|
105 |
benchmark_metric_mapping = {
|
106 |
-
"similarity": [
|
107 |
-
"function": [
|
108 |
-
"family": [
|
109 |
-
"affinity": [
|
110 |
}
|
111 |
-
|
112 |
-
#
|
113 |
leaderboard_method_selector = gr.CheckboxGroup(
|
114 |
-
choices=method_names,
|
|
|
|
|
|
|
115 |
)
|
116 |
|
117 |
-
|
118 |
-
choices=list(benchmark_metric_mapping.keys()),
|
119 |
-
label="Select Benchmark Types",
|
120 |
-
value=None,
|
121 |
-
interactive=True
|
122 |
)
|
|
|
123 |
leaderboard_metric_selector = gr.CheckboxGroup(
|
124 |
-
choices=metric_names,
|
|
|
|
|
|
|
125 |
)
|
126 |
|
127 |
-
#
|
128 |
baseline_value = get_baseline_df(method_names, metric_names)
|
129 |
-
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x)
|
130 |
baseline_header = ["Method"] + metric_names
|
131 |
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
|
132 |
|
133 |
with gr.Row(show_progress=True, variant='panel'):
|
134 |
-
data_component = gr.
|
135 |
value=baseline_value,
|
136 |
headers=baseline_header,
|
137 |
type="pandas",
|
@@ -140,78 +218,121 @@ with block:
|
|
140 |
visible=True,
|
141 |
)
|
142 |
|
143 |
-
#
|
144 |
leaderboard_method_selector.change(
|
145 |
-
get_baseline_df,
|
146 |
-
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
147 |
-
outputs=data_component
|
148 |
)
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
outputs=leaderboard_metric_selector
|
155 |
)
|
156 |
|
157 |
leaderboard_metric_selector.change(
|
158 |
-
get_baseline_df,
|
159 |
-
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
160 |
-
outputs=data_component
|
161 |
)
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
plot_button = gr.Button("Plot")
|
187 |
|
188 |
with gr.Row(show_progress=True, variant='panel'):
|
189 |
plot_output = gr.Image(label="Plot")
|
190 |
-
|
191 |
-
#
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
193 |
update_metric_choices,
|
194 |
-
inputs=[
|
195 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
)
|
197 |
-
|
198 |
plot_button.click(
|
199 |
-
|
200 |
-
inputs=[
|
201 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
)
|
203 |
-
|
204 |
-
|
|
|
|
|
|
|
205 |
with gr.Row():
|
206 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
207 |
with gr.Row():
|
208 |
gr.Image(
|
209 |
-
value="./src/data/PROBE_workflow_figure.jpg",
|
210 |
-
label="PROBE Workflow Figure",
|
211 |
-
elem_classes="about-image",
|
212 |
)
|
213 |
-
|
214 |
-
|
|
|
|
|
|
|
215 |
with gr.Row():
|
216 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
217 |
|
@@ -220,12 +341,8 @@ with block:
|
|
220 |
|
221 |
with gr.Row():
|
222 |
with gr.Column():
|
223 |
-
model_name_textbox = gr.Textbox(
|
224 |
-
|
225 |
-
)
|
226 |
-
revision_name_textbox = gr.Textbox(
|
227 |
-
label="Revision Method Name",
|
228 |
-
)
|
229 |
|
230 |
benchmark_types = gr.CheckboxGroup(
|
231 |
choices=TASK_INFO,
|
@@ -237,35 +354,34 @@ with block:
|
|
237 |
label="Similarity Tasks",
|
238 |
interactive=True,
|
239 |
)
|
240 |
-
|
241 |
function_prediction_aspect = gr.Radio(
|
242 |
choices=function_prediction_aspect_options,
|
243 |
label="Function Prediction Aspects",
|
244 |
interactive=True,
|
245 |
)
|
246 |
-
|
247 |
family_prediction_dataset = gr.CheckboxGroup(
|
248 |
choices=family_prediction_dataset_options,
|
249 |
label="Family Prediction Datasets",
|
250 |
interactive=True,
|
251 |
)
|
252 |
-
|
253 |
function_dataset = gr.Textbox(
|
254 |
label="Function Prediction Datasets",
|
255 |
visible=False,
|
256 |
-
value="All_Data_Sets"
|
257 |
)
|
258 |
|
259 |
save_checkbox = gr.Checkbox(
|
260 |
label="Save results for leaderboard and visualization",
|
261 |
-
value=True
|
262 |
)
|
263 |
|
264 |
-
#with gr.Column():
|
265 |
with gr.Row():
|
266 |
-
human_file = gr.
|
267 |
-
skempi_file = gr.
|
268 |
-
|
269 |
submit_button = gr.Button("Submit Eval")
|
270 |
submission_result = gr.Markdown()
|
271 |
submit_button.click(
|
@@ -284,6 +400,9 @@ with block:
|
|
284 |
],
|
285 |
)
|
286 |
|
|
|
|
|
|
|
287 |
with gr.Row():
|
288 |
data_run = gr.Button("Refresh")
|
289 |
data_run.click(refresh_data, outputs=[data_component])
|
@@ -296,4 +415,5 @@ with block:
|
|
296 |
show_copy_button=True,
|
297 |
)
|
298 |
|
299 |
-
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import pandas as pd
|
3 |
import re
|
|
|
20 |
from src.vis_utils import *
|
21 |
from src.bin.PROBE import run_probe
|
22 |
|
23 |
+
# ------------------------------------------------------------------
|
24 |
+
# Helper functions moved / added here so that UI callbacks can see them
|
25 |
+
# ------------------------------------------------------------------
|
26 |
|
27 |
def add_new_eval(
|
28 |
human_file,
|
|
|
36 |
family_prediction_dataset,
|
37 |
save,
|
38 |
):
|
39 |
+
"""Validate inputs, run evaluation and (optionally) save results."""
|
40 |
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
|
41 |
gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
|
42 |
return -1
|
|
|
45 |
gr.Warning("SKEMPI representations are required for affinity benchmark!")
|
46 |
return -1
|
47 |
|
48 |
+
gr.Info("Your submission is being processed…")
|
49 |
|
50 |
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
|
51 |
|
52 |
try:
|
53 |
+
results = run_probe(
|
54 |
+
benchmark_types,
|
55 |
+
representation_name,
|
56 |
+
human_file,
|
57 |
+
skempi_file,
|
58 |
+
similarity_tasks,
|
59 |
+
function_prediction_aspect,
|
60 |
+
function_prediction_dataset,
|
61 |
+
family_prediction_dataset,
|
62 |
+
)
|
63 |
+
except Exception:
|
64 |
+
gr.Warning("Your submission has not been processed. Please check your representation files!")
|
65 |
return -1
|
66 |
|
|
|
67 |
if save:
|
68 |
save_results(representation_name, benchmark_types, results)
|
69 |
+
gr.Info("Your submission has been processed and results are saved!")
|
|
|
70 |
else:
|
71 |
+
gr.Info("Your submission has been processed!")
|
72 |
|
73 |
return 0
|
74 |
|
75 |
+
|
76 |
def refresh_data():
|
77 |
+
"""Re‑start the space and pull fresh leaderboard CSVs from the HF Hub."""
|
78 |
api.restart_space(repo_id=repo_id)
|
79 |
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
|
80 |
|
|
|
86 |
benchmark_types.remove("leaderboard")
|
87 |
download_from_hub(benchmark_types)
|
88 |
|
89 |
+
|
90 |
+
# ------- Leaderboard helpers -------------------------------------------------
|
91 |
+
|
92 |
def update_metrics(selected_benchmarks):
|
93 |
+
"""Populate metric selector according to chosen benchmark types."""
|
94 |
updated_metrics = set()
|
95 |
for benchmark in selected_benchmarks:
|
96 |
updated_metrics.update(benchmark_metric_mapping.get(benchmark, []))
|
97 |
return list(updated_metrics)
|
98 |
+
|
99 |
+
|
100 |
def update_leaderboard(selected_methods, selected_metrics):
|
101 |
updated_df = get_baseline_df(selected_methods, selected_metrics)
|
102 |
return updated_df
|
103 |
+
|
104 |
+
# ------- Visualisation helpers ----------------------------------------------
|
105 |
+
|
106 |
+
def get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric):
|
107 |
+
"""Return a short natural‑language explanation for the produced plot."""
|
108 |
+
if benchmark_type == "similarity":
|
109 |
+
return (
|
110 |
+
f"The scatter plot compares models on **{x_metric}** (x‑axis) and "
|
111 |
+
f"**{y_metric}** (y‑axis). Points further to the upper‑right indicate better "
|
112 |
+
"performance on both metrics."
|
113 |
+
)
|
114 |
+
elif benchmark_type == "function":
|
115 |
+
return (
|
116 |
+
f"The heat‑map shows performance of each model (columns) across GO terms "
|
117 |
+
f"for the **{aspect.upper()}** aspect using the **{single_metric}** metric. "
|
118 |
+
"Darker squares correspond to stronger performance; hierarchical clustering "
|
119 |
+
"groups similar models and tasks together."
|
120 |
+
)
|
121 |
+
elif benchmark_type == "family":
|
122 |
+
return (
|
123 |
+
f"The horizontal box‑plots summarise cross‑validation performance on the "
|
124 |
+
f"**{dataset}** dataset. Higher median MCC values indicate better family‑"
|
125 |
+
"classification accuracy."
|
126 |
+
)
|
127 |
+
elif benchmark_type == "affinity":
|
128 |
+
return (
|
129 |
+
f"Each box‑plot shows the distribution of **{single_metric}** scores for every "
|
130 |
+
"model when predicting binding affinity changes. Higher values are better."
|
131 |
+
)
|
132 |
+
return ""
|
133 |
+
|
134 |
+
|
135 |
+
def generate_plot_and_explanation(
|
136 |
+
benchmark_type,
|
137 |
+
methods_selected,
|
138 |
+
x_metric,
|
139 |
+
y_metric,
|
140 |
+
aspect,
|
141 |
+
dataset,
|
142 |
+
single_metric,
|
143 |
+
):
|
144 |
+
"""Callback wrapper that returns both the image path and a textual explanation."""
|
145 |
+
plot_path = benchmark_plot(
|
146 |
+
benchmark_type,
|
147 |
+
methods_selected,
|
148 |
+
x_metric,
|
149 |
+
y_metric,
|
150 |
+
aspect,
|
151 |
+
dataset,
|
152 |
+
single_metric,
|
153 |
+
)
|
154 |
+
explanation = get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric)
|
155 |
+
return plot_path, explanation
|
156 |
+
|
157 |
+
# ------------------------------------------------------------------
|
158 |
+
# UI definition
|
159 |
+
# ------------------------------------------------------------------
|
160 |
block = gr.Blocks()
|
161 |
|
162 |
with block:
|
163 |
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
164 |
+
|
165 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
166 |
+
# ------------------------------------------------------------------
|
167 |
+
# 1️⃣ Leaderboard tab
|
168 |
+
# ------------------------------------------------------------------
|
169 |
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
|
170 |
+
leaderboard = get_baseline_df(None, None) # baseline leaderboard without filtering
|
171 |
|
|
|
|
|
172 |
method_names = leaderboard['Method'].unique().tolist()
|
173 |
metric_names = leaderboard.columns.tolist()
|
174 |
+
metric_names.remove('Method') # remove non‑metric column
|
|
|
175 |
|
176 |
benchmark_metric_mapping = {
|
177 |
+
"similarity": [m for m in metric_names if m.startswith('sim_')],
|
178 |
+
"function": [m for m in metric_names if m.startswith('func')],
|
179 |
+
"family": [m for m in metric_names if m.startswith('fam_')],
|
180 |
+
"affinity": [m for m in metric_names if m.startswith('aff_')],
|
181 |
}
|
182 |
+
|
183 |
+
# selectors -----------------------------------------------------
|
184 |
leaderboard_method_selector = gr.CheckboxGroup(
|
185 |
+
choices=method_names,
|
186 |
+
label="Select Methods for the Leaderboard",
|
187 |
+
value=method_names,
|
188 |
+
interactive=True,
|
189 |
)
|
190 |
|
191 |
+
benchmark_type_selector_lb = gr.CheckboxGroup(
|
192 |
+
choices=list(benchmark_metric_mapping.keys()),
|
193 |
+
label="Select Benchmark Types",
|
194 |
+
value=None,
|
195 |
+
interactive=True,
|
196 |
)
|
197 |
+
|
198 |
leaderboard_metric_selector = gr.CheckboxGroup(
|
199 |
+
choices=metric_names,
|
200 |
+
label="Select Metrics for the Leaderboard",
|
201 |
+
value=None,
|
202 |
+
interactive=True,
|
203 |
)
|
204 |
|
205 |
+
# leaderboard table --------------------------------------------
|
206 |
baseline_value = get_baseline_df(method_names, metric_names)
|
207 |
+
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x)
|
208 |
baseline_header = ["Method"] + metric_names
|
209 |
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
|
210 |
|
211 |
with gr.Row(show_progress=True, variant='panel'):
|
212 |
+
data_component = gr.Dataframe(
|
213 |
value=baseline_value,
|
214 |
headers=baseline_header,
|
215 |
type="pandas",
|
|
|
218 |
visible=True,
|
219 |
)
|
220 |
|
221 |
+
# callbacks -----------------------------------------------------
|
222 |
leaderboard_method_selector.change(
|
223 |
+
get_baseline_df,
|
224 |
+
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
225 |
+
outputs=data_component,
|
226 |
)
|
227 |
+
|
228 |
+
benchmark_type_selector_lb.change(
|
229 |
+
lambda selected: update_metrics(selected),
|
230 |
+
inputs=[benchmark_type_selector_lb],
|
231 |
+
outputs=leaderboard_metric_selector,
|
|
|
232 |
)
|
233 |
|
234 |
leaderboard_metric_selector.change(
|
235 |
+
get_baseline_df,
|
236 |
+
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
237 |
+
outputs=data_component,
|
238 |
)
|
239 |
|
240 |
+
# ------------------------------------------------------------------
|
241 |
+
# 2️⃣ Visualisation tab
|
242 |
+
# ------------------------------------------------------------------
|
243 |
+
with gr.TabItem("📊 Visualization", elem_id="probe-benchmark-tab-visualization", id=2):
|
244 |
+
# Intro / instructions
|
245 |
+
gr.Markdown(
|
246 |
+
"""
|
247 |
+
## **Interactive Visualizations**
|
248 |
+
Select a benchmark type first; context‑specific options will appear automatically.
|
249 |
+
Once your parameters are set, click **Plot** to generate the figure.
|
250 |
+
|
251 |
+
**How to read the plots**
|
252 |
+
* **Similarity (scatter)** – Each point is a model. Points nearer the top‑right perform well on both chosen similarity metrics.
|
253 |
+
* **Function prediction (heat‑map)** – Darker squares denote better scores. Rows/columns are clustered to reveal shared structure.
|
254 |
+
* **Family / Affinity (boxplots)** – Boxes summarise distribution across folds/targets. Higher medians indicate stronger performance.
|
255 |
+
""",
|
256 |
+
elem_classes="markdown-text",
|
257 |
+
)
|
258 |
|
259 |
+
# ------------------------------------------------------------------
|
260 |
+
# selectors specific to visualisation
|
261 |
+
# ------------------------------------------------------------------
|
262 |
+
vis_benchmark_type_selector = gr.Dropdown(
|
263 |
+
choices=list(benchmark_specific_metrics.keys()),
|
264 |
+
label="Select Benchmark Type",
|
265 |
+
value=None,
|
266 |
+
)
|
267 |
|
268 |
+
with gr.Row():
|
269 |
+
vis_x_metric_selector = gr.Dropdown(choices=[], label="Select X‑axis Metric", visible=False)
|
270 |
+
vis_y_metric_selector = gr.Dropdown(choices=[], label="Select Y‑axis Metric", visible=False)
|
271 |
+
vis_aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False)
|
272 |
+
vis_dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False)
|
273 |
+
vis_single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False)
|
274 |
+
|
275 |
+
vis_method_selector = gr.CheckboxGroup(
|
276 |
+
choices=method_names,
|
277 |
+
label="Select methods to visualize",
|
278 |
+
interactive=True,
|
279 |
+
value=method_names,
|
280 |
+
)
|
281 |
|
282 |
plot_button = gr.Button("Plot")
|
283 |
|
284 |
with gr.Row(show_progress=True, variant='panel'):
|
285 |
plot_output = gr.Image(label="Plot")
|
286 |
+
|
287 |
+
# textual explanation below the image
|
288 |
+
plot_explanation = gr.Markdown(visible=False)
|
289 |
+
|
290 |
+
# ------------------------------------------------------------------
|
291 |
+
# callbacks for visualisation tab
|
292 |
+
# ------------------------------------------------------------------
|
293 |
+
vis_benchmark_type_selector.change(
|
294 |
update_metric_choices,
|
295 |
+
inputs=[vis_benchmark_type_selector],
|
296 |
+
outputs=[
|
297 |
+
vis_x_metric_selector,
|
298 |
+
vis_y_metric_selector,
|
299 |
+
vis_aspect_type_selector,
|
300 |
+
vis_dataset_selector,
|
301 |
+
vis_single_metric_selector,
|
302 |
+
],
|
303 |
)
|
304 |
+
|
305 |
plot_button.click(
|
306 |
+
generate_plot_and_explanation,
|
307 |
+
inputs=[
|
308 |
+
vis_benchmark_type_selector,
|
309 |
+
vis_method_selector,
|
310 |
+
vis_x_metric_selector,
|
311 |
+
vis_y_metric_selector,
|
312 |
+
vis_aspect_type_selector,
|
313 |
+
vis_dataset_selector,
|
314 |
+
vis_single_metric_selector,
|
315 |
+
],
|
316 |
+
outputs=[plot_output, plot_explanation],
|
317 |
)
|
318 |
+
|
319 |
+
# ------------------------------------------------------------------
|
320 |
+
# 3️⃣ About tab
|
321 |
+
# ------------------------------------------------------------------
|
322 |
+
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=3):
|
323 |
with gr.Row():
|
324 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
325 |
with gr.Row():
|
326 |
gr.Image(
|
327 |
+
value="./src/data/PROBE_workflow_figure.jpg",
|
328 |
+
label="PROBE Workflow Figure",
|
329 |
+
elem_classes="about-image",
|
330 |
)
|
331 |
+
|
332 |
+
# ------------------------------------------------------------------
|
333 |
+
# 4️⃣ Submit tab
|
334 |
+
# ------------------------------------------------------------------
|
335 |
+
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=4):
|
336 |
with gr.Row():
|
337 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
338 |
|
|
|
341 |
|
342 |
with gr.Row():
|
343 |
with gr.Column():
|
344 |
+
model_name_textbox = gr.Textbox(label="Method name")
|
345 |
+
revision_name_textbox = gr.Textbox(label="Revision Method Name")
|
|
|
|
|
|
|
|
|
346 |
|
347 |
benchmark_types = gr.CheckboxGroup(
|
348 |
choices=TASK_INFO,
|
|
|
354 |
label="Similarity Tasks",
|
355 |
interactive=True,
|
356 |
)
|
357 |
+
|
358 |
function_prediction_aspect = gr.Radio(
|
359 |
choices=function_prediction_aspect_options,
|
360 |
label="Function Prediction Aspects",
|
361 |
interactive=True,
|
362 |
)
|
363 |
+
|
364 |
family_prediction_dataset = gr.CheckboxGroup(
|
365 |
choices=family_prediction_dataset_options,
|
366 |
label="Family Prediction Datasets",
|
367 |
interactive=True,
|
368 |
)
|
369 |
+
|
370 |
function_dataset = gr.Textbox(
|
371 |
label="Function Prediction Datasets",
|
372 |
visible=False,
|
373 |
+
value="All_Data_Sets",
|
374 |
)
|
375 |
|
376 |
save_checkbox = gr.Checkbox(
|
377 |
label="Save results for leaderboard and visualization",
|
378 |
+
value=True,
|
379 |
)
|
380 |
|
|
|
381 |
with gr.Row():
|
382 |
+
human_file = gr.File(label="Representation file (CSV) for Human dataset", file_count="single", type='filepath')
|
383 |
+
skempi_file = gr.File(label="Representation file (CSV) for SKEMPI dataset", file_count="single", type='filepath')
|
384 |
+
|
385 |
submit_button = gr.Button("Submit Eval")
|
386 |
submission_result = gr.Markdown()
|
387 |
submit_button.click(
|
|
|
400 |
],
|
401 |
)
|
402 |
|
403 |
+
# ----------------------------------------------------------------------
|
404 |
+
# global refresh button & citation accordion
|
405 |
+
# ----------------------------------------------------------------------
|
406 |
with gr.Row():
|
407 |
data_run = gr.Button("Refresh")
|
408 |
data_run.click(refresh_data, outputs=[data_component])
|
|
|
415 |
show_copy_button=True,
|
416 |
)
|
417 |
|
418 |
+
# -----------------------------------------------------------------------------
|
419 |
+
block.launch()
|