Spaces:
Running
Running
File size: 16,975 Bytes
1cc2077 25f445b b90013e dc9c8a6 4826928 df66c51 1cc2077 b696eae 1cc2077 3e6bf0e a2e6203 1cc2077 edb9d91 3624a97 1cc2077 2781be6 d10decd 72f465f 1cc2077 edb9d91 cdf41df 11d1b83 cdf41df b696eae cdf41df 11d1b83 cdf41df edb9d91 b363799 1cc2077 b972165 7f7ea9c edb9d91 56d7438 7f7ea9c 72f465f edb9d91 e1bfbc1 edb9d91 7f7ea9c 72f465f 1cc2077 edb9d91 90fcb15 edb9d91 b696eae 37c0c8d b696eae 37c0c8d b696eae 37c0c8d 8cc60a4 b20cd7e edb9d91 b696eae edb9d91 b696eae edb9d91 b696eae edb9d91 56d7438 1cc2077 b90013e edb9d91 1cc2077 edb9d91 524ef7e edb9d91 b696eae 508ed01 90fcb15 edb9d91 c0e572f edb9d91 c0e572f edb9d91 51bfc88 edb9d91 51bfc88 b696eae edb9d91 c0e572f edb9d91 51bfc88 edb9d91 51bfc88 edb9d91 51bfc88 edb9d91 508ed01 51bfc88 6962b8e edb9d91 761c866 6962b8e edb9d91 51bfc88 edb9d91 51bfc88 edb9d91 c0e572f b696eae 51bfc88 edb9d91 51bfc88 edb9d91 b696eae edb9d91 b696eae edb9d91 b696eae 51bfc88 b696eae 6962b8e edb9d91 51bfc88 edb9d91 51bfc88 edb9d91 51bfc88 edb9d91 51bfc88 edb9d91 1cc2077 fe897f2 edb9d91 fe897f2 edb9d91 1cc2077 b696eae 1cc2077 b696eae 1cc2077 edb9d91 b696eae 72f465f 1cc2077 72f465f 1cc2077 c806fef b696eae c806fef edb9d91 c806fef b696eae c806fef edb9d91 c806fef b696eae c806fef edb9d91 6323d6b 72f465f 6323d6b edb9d91 6323d6b b696eae 72f465f edb9d91 72f465f b696eae 1b91391 edb9d91 d280876 b696eae d280876 b696eae d280876 1cc2077 edb9d91 1cc2077 b90013e 1cc2077 edb9d91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
import seaborn as sns
import plotnine as p9
import sys
sys.path.append('./src')
sys.path.append('.')
from huggingface_hub import HfApi
repo_id = "HUBioDataLab/PROBE"
api = HfApi()
from src.about import *
from src.saving_utils import *
from src.vis_utils import *
from src.bin.PROBE import run_probe
# ------------------------------------------------------------------
# Helper functions moved / added here so that UI callbacks can see them
# ------------------------------------------------------------------
def add_new_eval(
human_file,
skempi_file,
model_name_textbox: str,
revision_name_textbox: str,
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
save,
):
"""Validate inputs, run evaluation and (optionally) save results."""
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
return -1
if 'affinity' in benchmark_types and skempi_file is None:
gr.Warning("SKEMPI representations are required for affinity benchmark!")
return -1
gr.Info("Your submission is being processed…")
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
try:
results = run_probe(
benchmark_types,
representation_name,
human_file,
skempi_file,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
)
except Exception:
gr.Warning("Your submission has not been processed. Please check your representation files!")
return -1
if save:
save_results(representation_name, benchmark_types, results)
gr.Info("Your submission has been processed and results are saved!")
else:
gr.Info("Your submission has been processed!")
return 0
def refresh_data():
"""Re‑start the space and pull fresh leaderboard CSVs from the HF Hub."""
api.restart_space(repo_id=repo_id)
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
for benchmark_type in benchmark_types:
path = f"/tmp/{benchmark_type}_results.csv"
if os.path.exists(path):
os.remove(path)
benchmark_types.remove("leaderboard")
download_from_hub(benchmark_types)
# ------- Leaderboard helpers -------------------------------------------------
def update_metrics(selected_benchmarks):
"""Populate metric selector according to chosen benchmark types."""
updated_metrics = set()
for benchmark in selected_benchmarks:
updated_metrics.update(benchmark_metric_mapping.get(benchmark, []))
return list(updated_metrics)
def update_leaderboard(selected_methods, selected_metrics):
updated_df = get_baseline_df(selected_methods, selected_metrics)
return updated_df
# ------- Visualisation helpers ----------------------------------------------
def get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric):
"""Return a short natural‑language explanation for the produced plot."""
if benchmark_type == "similarity":
return (
f"The scatter plot compares models on **{x_metric}** (x‑axis) and "
f"**{y_metric}** (y‑axis). Points further to the upper‑right indicate better "
"performance on both metrics."
)
elif benchmark_type == "function":
return (
f"The heat‑map shows performance of each model (columns) across GO terms "
f"for the **{aspect.upper()}** aspect using the **{single_metric}** metric. "
"Darker squares correspond to stronger performance; hierarchical clustering "
"groups similar models and tasks together."
)
elif benchmark_type == "family":
return (
f"The horizontal box‑plots summarise cross‑validation performance on the "
f"**{dataset}** dataset. Higher median MCC values indicate better family‑"
"classification accuracy."
)
elif benchmark_type == "affinity":
return (
f"Each box‑plot shows the distribution of **{single_metric}** scores for every "
"model when predicting binding affinity changes. Higher values are better."
)
return ""
def generate_plot_and_explanation(
benchmark_type,
methods_selected,
x_metric,
y_metric,
aspect,
dataset,
single_metric,
):
"""Callback wrapper that returns both the image path and a textual explanation."""
plot_path = benchmark_plot(
benchmark_type,
methods_selected,
x_metric,
y_metric,
aspect,
dataset,
single_metric,
)
explanation = get_plot_explanation(benchmark_type, x_metric, y_metric, aspect, dataset, single_metric)
return plot_path, explanation
# ------------------------------------------------------------------
# UI definition
# ------------------------------------------------------------------
block = gr.Blocks()
with block:
gr.Markdown(LEADERBOARD_INTRODUCTION)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
# ------------------------------------------------------------------
# 1️⃣ Leaderboard tab
# ------------------------------------------------------------------
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
leaderboard = get_baseline_df(None, None) # baseline leaderboard without filtering
method_names = leaderboard['Method'].unique().tolist()
metric_names = leaderboard.columns.tolist()
metric_names.remove('Method') # remove non‑metric column
benchmark_metric_mapping = {
"similarity": [m for m in metric_names if m.startswith('sim_')],
"function": [m for m in metric_names if m.startswith('func')],
"family": [m for m in metric_names if m.startswith('fam_')],
"affinity": [m for m in metric_names if m.startswith('aff_')],
}
# selectors -----------------------------------------------------
leaderboard_method_selector = gr.CheckboxGroup(
choices=method_names,
label="Select Methods for the Leaderboard",
value=method_names,
interactive=True,
)
benchmark_type_selector_lb = gr.CheckboxGroup(
choices=list(benchmark_metric_mapping.keys()),
label="Select Benchmark Types",
value=None,
interactive=True,
)
leaderboard_metric_selector = gr.CheckboxGroup(
choices=metric_names,
label="Select Metrics for the Leaderboard",
value=None,
interactive=True,
)
# leaderboard table --------------------------------------------
baseline_value = get_baseline_df(method_names, metric_names)
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x)
baseline_header = ["Method"] + metric_names
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
with gr.Row(show_progress=True, variant='panel'):
data_component = gr.Dataframe(
value=baseline_value,
headers=baseline_header,
type="pandas",
datatype=baseline_datatype,
interactive=False,
visible=True,
)
# callbacks -----------------------------------------------------
leaderboard_method_selector.change(
get_baseline_df,
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
outputs=data_component,
)
benchmark_type_selector_lb.change(
lambda selected: update_metrics(selected),
inputs=[benchmark_type_selector_lb],
outputs=leaderboard_metric_selector,
)
leaderboard_metric_selector.change(
get_baseline_df,
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
outputs=data_component,
)
# ------------------------------------------------------------------
# 2️⃣ Visualisation tab
# ------------------------------------------------------------------
with gr.TabItem("📊 Visualization", elem_id="probe-benchmark-tab-visualization", id=2):
# Intro / instructions
gr.Markdown(
"""
## **Interactive Visualizations**
Select a benchmark type first; context‑specific options will appear automatically.
Once your parameters are set, click **Plot** to generate the figure.
**How to read the plots**
* **Similarity (scatter)** – Each point is a model. Points nearer the top‑right perform well on both chosen similarity metrics.
* **Function prediction (heat‑map)** – Darker squares denote better scores. Rows/columns are clustered to reveal shared structure.
* **Family / Affinity (boxplots)** – Boxes summarise distribution across folds/targets. Higher medians indicate stronger performance.
""",
elem_classes="markdown-text",
)
# ------------------------------------------------------------------
# selectors specific to visualisation
# ------------------------------------------------------------------
vis_benchmark_type_selector = gr.Dropdown(
choices=list(benchmark_specific_metrics.keys()),
label="Select Benchmark Type",
value=None,
)
with gr.Row():
vis_x_metric_selector = gr.Dropdown(choices=[], label="Select X‑axis Metric", visible=False)
vis_y_metric_selector = gr.Dropdown(choices=[], label="Select Y‑axis Metric", visible=False)
vis_aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False)
vis_dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False)
vis_single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False)
vis_method_selector = gr.CheckboxGroup(
choices=method_names,
label="Select methods to visualize",
interactive=True,
value=method_names,
)
plot_button = gr.Button("Plot")
with gr.Row(show_progress=True, variant='panel'):
plot_output = gr.Image(label="Plot")
# textual explanation below the image
plot_explanation = gr.Markdown(visible=False)
# ------------------------------------------------------------------
# callbacks for visualisation tab
# ------------------------------------------------------------------
vis_benchmark_type_selector.change(
update_metric_choices,
inputs=[vis_benchmark_type_selector],
outputs=[
vis_x_metric_selector,
vis_y_metric_selector,
vis_aspect_type_selector,
vis_dataset_selector,
vis_single_metric_selector,
],
)
plot_button.click(
generate_plot_and_explanation,
inputs=[
vis_benchmark_type_selector,
vis_method_selector,
vis_x_metric_selector,
vis_y_metric_selector,
vis_aspect_type_selector,
vis_dataset_selector,
vis_single_metric_selector,
],
outputs=[plot_output, plot_explanation],
)
# ------------------------------------------------------------------
# 3️⃣ About tab
# ------------------------------------------------------------------
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=3):
with gr.Row():
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Image(
value="./src/data/PROBE_workflow_figure.jpg",
label="PROBE Workflow Figure",
elem_classes="about-image",
)
# ------------------------------------------------------------------
# 4️⃣ Submit tab
# ------------------------------------------------------------------
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=4):
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Method name")
revision_name_textbox = gr.Textbox(label="Revision Method Name")
benchmark_types = gr.CheckboxGroup(
choices=TASK_INFO,
label="Benchmark Types",
interactive=True,
)
similarity_tasks = gr.CheckboxGroup(
choices=similarity_tasks_options,
label="Similarity Tasks",
interactive=True,
)
function_prediction_aspect = gr.Radio(
choices=function_prediction_aspect_options,
label="Function Prediction Aspects",
interactive=True,
)
family_prediction_dataset = gr.CheckboxGroup(
choices=family_prediction_dataset_options,
label="Family Prediction Datasets",
interactive=True,
)
function_dataset = gr.Textbox(
label="Function Prediction Datasets",
visible=False,
value="All_Data_Sets",
)
save_checkbox = gr.Checkbox(
label="Save results for leaderboard and visualization",
value=True,
)
with gr.Row():
human_file = gr.File(label="Representation file (CSV) for Human dataset", file_count="single", type='filepath')
skempi_file = gr.File(label="Representation file (CSV) for SKEMPI dataset", file_count="single", type='filepath')
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
add_new_eval,
inputs=[
human_file,
skempi_file,
model_name_textbox,
revision_name_textbox,
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_dataset,
family_prediction_dataset,
save_checkbox,
],
)
# ----------------------------------------------------------------------
# global refresh button & citation accordion
# ----------------------------------------------------------------------
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(refresh_data, outputs=[data_component])
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
# -----------------------------------------------------------------------------
block.launch()
|