Spaces:
Running
Running
update app
Browse files- app.py +3 -23
- src/bin/PROBE.py +40 -0
app.py
CHANGED
|
@@ -9,6 +9,7 @@ import json
|
|
| 9 |
import yaml
|
| 10 |
|
| 11 |
from src.about import *
|
|
|
|
| 12 |
|
| 13 |
global data_component, filter_component
|
| 14 |
|
|
@@ -19,19 +20,6 @@ def get_baseline_df():
|
|
| 19 |
df = df[present_columns]
|
| 20 |
return df
|
| 21 |
|
| 22 |
-
def update_yaml(representation_name, benchmark_type, human_file_path, skempi_file_path):
|
| 23 |
-
with open("./src/bin/probe_config.yaml", 'r') as file:
|
| 24 |
-
yaml_data = yaml.safe_load(file)
|
| 25 |
-
|
| 26 |
-
yaml_data['representation_name'] = representation_name
|
| 27 |
-
yaml_data['benchmark'] = benchmark_type
|
| 28 |
-
yaml_data['representation_file_human'] = human_file
|
| 29 |
-
yaml_data['representation_file_affinity'] = skempi_file
|
| 30 |
-
|
| 31 |
-
with open("./src/bin/probe_config.yaml", "w") as file:
|
| 32 |
-
yaml.dump(yaml_data, file)
|
| 33 |
-
|
| 34 |
-
return None
|
| 35 |
|
| 36 |
def add_new_eval(
|
| 37 |
human_file,
|
|
@@ -42,16 +30,8 @@ def add_new_eval(
|
|
| 42 |
):
|
| 43 |
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
# Save human and skempi files under ./src/data/representation_vectors using pandas
|
| 48 |
-
print(human_file)
|
| 49 |
-
df = pd.read_csv(human_file)
|
| 50 |
-
print(df.head().to_string())
|
| 51 |
-
return None
|
| 52 |
-
if human_file is not None:
|
| 53 |
-
human_df = pd.read_csv(human_file)
|
| 54 |
-
human_df.to_csv(f"./src/data/representation_vectors/{representation_name}_human.csv", index=False)
|
| 55 |
|
| 56 |
return None
|
| 57 |
|
|
|
|
| 9 |
import yaml
|
| 10 |
|
| 11 |
from src.about import *
|
| 12 |
+
from src.bin.PROBE import run_probe
|
| 13 |
|
| 14 |
global data_component, filter_component
|
| 15 |
|
|
|
|
| 20 |
df = df[present_columns]
|
| 21 |
return df
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
def add_new_eval(
|
| 25 |
human_file,
|
|
|
|
| 30 |
):
|
| 31 |
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
|
| 32 |
|
| 33 |
+
run_probe(benchmark_type, representation_name, human_file, skempi_file)
|
| 34 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
return None
|
| 37 |
|
src/bin/PROBE.py
CHANGED
|
@@ -59,4 +59,44 @@ if args["benchmark"] in ["affinity","all"]:
|
|
| 59 |
bae.predict_affinities_and_report_results()
|
| 60 |
print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is finished...\n")
|
| 61 |
|
|
|
|
|
|
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
bae.predict_affinities_and_report_results()
|
| 60 |
print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is finished...\n")
|
| 61 |
|
| 62 |
+
def run_probe(benchmarks, representation_name, representation_file_human, representation_file_affinity, similarity_tasks=["Sparse","200","500"], function_prediction_aspec="All_Aspects", function_prediction_dataset="All_Data_Sets", family_prediction_dataset=["nc","uc50","uc30","mm15"], detailed_output=False):
|
| 63 |
+
print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is started...\n\n")
|
| 64 |
|
| 65 |
+
if any(item in ['similarity', 'function', 'family', 'all'] for item in benchmarks):
|
| 66 |
+
print("\nRepresentation vectors are loading...\n")
|
| 67 |
+
human_representation_dataframe = load_representation(representation_file_human)
|
| 68 |
+
|
| 69 |
+
if "similarity" in benchmarks:
|
| 70 |
+
print("\nSemantic similarity Inference Benchmark is running...\n")
|
| 71 |
+
ssi.representation_dataframe = human_representation_dataframe
|
| 72 |
+
ssi.representation_name = representation_name
|
| 73 |
+
ssi.protein_names = ssi.representation_dataframe['Entry'].tolist()
|
| 74 |
+
ssi.similarity_tasks = similarity_tasks
|
| 75 |
+
ssi.detailed_output = detailed_output
|
| 76 |
+
ssi.calculate_all_correlations()
|
| 77 |
+
|
| 78 |
+
if "function" in benchmarks:
|
| 79 |
+
print("\n\nOntology-based protein function prediction benchmark is running...\n")
|
| 80 |
+
fp.aspect_type = function_prediction_aspect
|
| 81 |
+
fp.dataset_type = function_prediction_dataset
|
| 82 |
+
fp.representation_dataframe = human_representation_dataframe
|
| 83 |
+
fp.representation_name = representation_name
|
| 84 |
+
fp.detailed_output = detailed_output
|
| 85 |
+
fp.pred_output()
|
| 86 |
+
|
| 87 |
+
if "family" in benchmarks:
|
| 88 |
+
print("\n\nDrug target protein family classification benchmark is running...\n")
|
| 89 |
+
tfc.representation_path = representation_file_human
|
| 90 |
+
tfc.representation_name = representation_name
|
| 91 |
+
tfc.detailed_output = detailed_output
|
| 92 |
+
for dataset in family_prediction_dataset:
|
| 93 |
+
tfc.score_protein_rep(dataset)
|
| 94 |
+
|
| 95 |
+
if "affinity" in benchmarks:
|
| 96 |
+
print("\n\nProtein-protein binding affinity estimation benchmark is running...\n")
|
| 97 |
+
bae.skempi_vectors_path = representation_file_affinity
|
| 98 |
+
bae.representation_name = representation_name
|
| 99 |
+
bae.predict_affinities_and_report_results()
|
| 100 |
+
|
| 101 |
+
print("\n\nPROBE (Protein RepresentatiOn Benchmark) run is finished...\n")
|
| 102 |
+
return 0
|