Spaces:
Running
Running
File size: 11,275 Bytes
3066087 c37b36e 22596d6 c37b36e 44f1555 d85921f c37b36e a0fefdf c139644 c37b36e 22596d6 c37b36e 22596d6 a0fefdf 22596d6 c37b36e a0fefdf c37b36e a0fefdf c5a64f8 a0fefdf c37b36e 22596d6 d5b84f5 22596d6 d5b84f5 c139644 22596d6 c139644 22596d6 a0fefdf c139644 c37b36e c139644 b6e7946 c37b36e b6e7946 c37b36e d85921f c37b36e 22596d6 c139644 22596d6 a0fefdf 22596d6 c37b36e d85921f c37b36e 22596d6 c37b36e 22596d6 c37b36e 22596d6 c37b36e 22596d6 c37b36e 22596d6 c37b36e 050c132 c139644 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# import os
# import subprocess
# import whisper
# import requests
# import tempfile
# import warnings
# import threading
# from flask import Flask, request, jsonify, send_file, render_template
# from dotenv import load_dotenv
# import requests
# warnings.filterwarnings("ignore", category=UserWarning, module="whisper")
# app = Flask(__name__)
# # Gemini API settings
# load_dotenv()
# API_KEY = os.getenv("FIRST_API_KEY")
# # Ensure the API key is loaded correctly
# if not API_KEY:
# raise ValueError("API Key not found. Make sure it is set in the .env file.")
# GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
# GEMINI_API_KEY = API_KEY
# # Load Whisper AI model at startup
# print("Loading Whisper AI model...")
# whisper_model = whisper.load_model("base")
# print("Whisper AI model loaded successfully.")
# # Define the "/" endpoint for health check
# @app.route("/", methods=["GET"])
# def health_check():
# return jsonify({"status": "success", "message": "API is running successfully!"}), 200
# def process_video_in_background(video_file, temp_video_file_name):
# """
# This function is executed in a separate thread to handle the long-running
# video processing tasks such as transcription and querying the Gemini API.
# """
# try:
# transcription = transcribe_audio(temp_video_file_name)
# if not transcription:
# print("Audio transcription failed")
# return
# structured_data = query_gemini_api(transcription)
# # Send structured data back or store it in a database, depending on your use case
# print("Processing complete. Structured data:", structured_data)
# except Exception as e:
# print(f"Error processing video: {e}")
# finally:
# # Clean up temporary files
# if os.path.exists(temp_video_file_name):
# os.remove(temp_video_file_name)
# @app.route('/process-video', methods=['POST'])
# def process_video():
# if 'video' not in request.files:
# return jsonify({"error": "No video file provided"}), 400
# video_file = request.files['video']
# try:
# # Save video to a temporary file
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as temp_video_file:
# video_file.save(temp_video_file.name)
# print(f"Video file saved: {temp_video_file.name}")
# # Start the video processing in a background thread
# threading.Thread(target=process_video_in_background, args=(video_file, temp_video_file.name)).start()
# return jsonify({"message": "Video is being processed in the background."}), 202
# except Exception as e:
# return jsonify({"error": str(e)}), 500
# def transcribe_audio(video_path):
# """
# Transcribe audio directly from a video file using Whisper AI.
# """
# try:
# print(f"Transcribing video: {video_path}")
# result = whisper_model.transcribe(video_path)
# return result['text']
# except Exception as e:
# print(f"Error in transcription: {e}")
# return None
# def query_gemini_api(transcription):
# """
# Send transcription text to Gemini API and fetch structured recipe information.
# """
# try:
# # Define the structured prompt
# prompt = (
# "Analyze the provided cooking video transcription and extract the following structured information:\n"
# "1. Recipe Name: Identify the name of the dish being prepared.\n"
# "2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
# "3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
# "4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
# "5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
# "6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
# "7. Serving size: In count of people or portion size.\n"
# "8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
# "9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
# f"Text: {transcription}\n"
# )
# payload = {
# "contents": [
# {"parts": [{"text": prompt}]}
# ]
# }
# headers = {"Content-Type": "application/json"}
# # Send request to Gemini API
# response = requests.post(
# f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
# json=payload,
# headers=headers
# )
# response.raise_for_status()
# # Extract and return the structured data
# data = response.json()
# return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
# except requests.exceptions.RequestException as e:
# print(f"Error querying Gemini API: {e}")
# return {"error": str(e)}
# if __name__ == '__main__':
# app.run(debug=True)
# Above code is without polling and sleep
import os
import whisper
import requests
from flask import Flask, request, jsonify, render_template
import tempfile
import warnings
warnings.filterwarnings("ignore", message="FP16 is not supported on CPU; using FP32 instead")
app = Flask(__name__)
print("APP IS RUNNING, ANIKET")
# Gemini API settings
from dotenv import load_dotenv
# Load the .env file
load_dotenv()
print("ENV LOADED, ANIKET")
# Fetch the API key from the .env file
API_KEY = os.getenv("FIRST_API_KEY")
# Ensure the API key is loaded correctly
if not API_KEY:
raise ValueError("API Key not found. Make sure it is set in the .env file.")
GEMINI_API_ENDPOINT = "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-latest:generateContent"
GEMINI_API_KEY = API_KEY
# Load Whisper AI model at startup
print("Loading Whisper AI model..., ANIKET")
whisper_model = whisper.load_model("base") # Choose model size: tiny, base, small, medium, large
print("Whisper AI model loaded successfully, ANIKET")
# Define the "/" endpoint for health check
@app.route("/", methods=["GET"])
def health_check():
return jsonify({"status": "success", "message": "API is running successfully!"}), 200
@app.route("/mbsa")
def mbsa():
return render_template("mbsa.html")
@app.route('/process-audio', methods=['POST'])
def process_audio():
print("GOT THE PROCESS AUDIO REQUEST, ANIKET")
"""
Flask endpoint to process audio:
1. Transcribe provided audio file using Whisper AI.
2. Send transcription to Gemini API for recipe information extraction.
3. Return structured data in the response.
"""
if 'audio' not in request.files:
return jsonify({"error": "No audio file provided"}), 400
audio_file = request.files['audio']
print("AUDIO FILE NAME: ", audio_file)
try:
print("STARTING TRANSCRIPTION, ANIKET")
# Step 1: Transcribe the uploaded audio file directly
audio_file = request.files['audio']
transcription = transcribe_audio(audio_file)
print("BEFORE THE transcription FAILED ERROR, CHECKING IF I GOT THE TRANSCRIPTION", transcription)
if not transcription:
return jsonify({"error": "Audio transcription failed"}), 500
print("GOT THE transcription")
print("Starting the GEMINI REQUEST TO STRUCTURE IT")
# Step 2: Generate structured recipe information using Gemini API
structured_data = query_gemini_api(transcription)
print("GOT THE STRUCTURED DATA", structured_data)
# Step 3: Return the structured data
return jsonify(structured_data)
except Exception as e:
return jsonify({"error": str(e)}), 500
def transcribe_audio(audio_path):
"""
Transcribe audio using Whisper AI.
"""
print("CAME IN THE transcribe audio function")
try:
# Transcribe audio using Whisper AI
print("Transcribing audio...")
result = whisper_model.transcribe(audio_path)
print("THE RESULTS ARE", result)
return result.get("text", "").strip()
except Exception as e:
print(f"Error in transcription: {e}")
return None
def query_gemini_api(transcription):
"""
Send transcription text to Gemini API and fetch structured recipe information.
"""
try:
# Define the structured prompt
prompt = (
"Analyze the provided cooking video transcription and extract the following structured information:\n"
"1. Recipe Name: Identify the name of the dish being prepared.\n"
"2. Ingredients List: Extract a detailed list of ingredients with their respective quantities (if mentioned).\n"
"3. Steps for Preparation: Provide a step-by-step breakdown of the recipe's preparation process, organized and numbered sequentially.\n"
"4. Cooking Techniques Used: Highlight the cooking techniques demonstrated in the video, such as searing, blitzing, wrapping, etc.\n"
"5. Equipment Needed: List all tools, appliances, or utensils mentioned, e.g., blender, hot pan, cling film, etc.\n"
"6. Nutritional Information (if inferred): Provide an approximate calorie count or nutritional breakdown based on the ingredients used.\n"
"7. Serving size: In count of people or portion size.\n"
"8. Special Notes or Variations: Include any specific tips, variations, or alternatives mentioned.\n"
"9. Festive or Thematic Relevance: Note if the recipe has any special relevance to holidays, events, or seasons.\n"
f"Text: {transcription}\n"
)
# Prepare the payload and headers
payload = {
"contents": [
{
"parts": [
{"text": prompt}
]
}
]
}
headers = {"Content-Type": "application/json"}
# Send request to Gemini API and wait for the response
print("Querying Gemini API...")
response = requests.post(
f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
json=payload,
headers=headers,
timeout=60 # 60 seconds timeout for the request
)
response.raise_for_status()
# Extract and return the structured data
data = response.json()
return data.get("candidates", [{}])[0].get("content", {}).get("parts", [{}])[0].get("text", "No result found")
except requests.exceptions.RequestException as e:
print(f"Error querying Gemini API: {e}")
return {"error": str(e)}
if __name__ == '__main__':
app.run(debug=True)
|