Spaces:
Running
Running
some threading included
Browse files
app.py
CHANGED
@@ -4,16 +4,15 @@ import whisper
|
|
4 |
import requests
|
5 |
from flask import Flask, request, jsonify, send_file
|
6 |
import tempfile
|
|
|
|
|
|
|
|
|
7 |
|
8 |
app = Flask(__name__)
|
9 |
|
10 |
# Gemini API settings
|
11 |
-
from dotenv import load_dotenv
|
12 |
-
import requests
|
13 |
-
# Load the .env file
|
14 |
load_dotenv()
|
15 |
-
|
16 |
-
# Fetch the API key from the .env file
|
17 |
API_KEY = os.getenv("FIRST_API_KEY")
|
18 |
|
19 |
# Ensure the API key is loaded correctly
|
@@ -25,27 +24,45 @@ GEMINI_API_KEY = API_KEY
|
|
25 |
|
26 |
# Load Whisper AI model at startup
|
27 |
print("Loading Whisper AI model...")
|
28 |
-
whisper_model = whisper.load_model("base")
|
29 |
print("Whisper AI model loaded successfully.")
|
30 |
|
31 |
-
|
32 |
# Define the "/" endpoint for health check
|
33 |
@app.route("/", methods=["GET"])
|
34 |
def health_check():
|
35 |
return jsonify({"status": "success", "message": "API is running successfully!"}), 200
|
36 |
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
@app.route('/process-video', methods=['POST'])
|
40 |
def process_video():
|
41 |
-
"""
|
42 |
-
Flask endpoint to process video:
|
43 |
-
1. Extract audio and transcribe using Whisper AI.
|
44 |
-
2. Send transcription to Gemini API for recipe information extraction.
|
45 |
-
3. Return structured data in the response.
|
46 |
-
"""
|
47 |
if 'video' not in request.files:
|
48 |
-
return jsonify({"
|
49 |
|
50 |
video_file = request.files['video']
|
51 |
|
@@ -55,74 +72,28 @@ def process_video():
|
|
55 |
video_file.save(temp_video_file.name)
|
56 |
print(f"Video file saved: {temp_video_file.name}")
|
57 |
|
58 |
-
#
|
59 |
-
|
60 |
-
|
61 |
-
if not transcription:
|
62 |
-
return jsonify({"error2": "Audio transcription failed"}), 500
|
63 |
|
64 |
-
|
65 |
-
structured_data = query_gemini_api(transcription)
|
66 |
-
|
67 |
-
return jsonify(structured_data)
|
68 |
|
69 |
except Exception as e:
|
70 |
-
return jsonify({"
|
71 |
|
72 |
-
finally:
|
73 |
-
# Clean up temporary files
|
74 |
-
if os.path.exists(temp_video_file.name):
|
75 |
-
os.remove(temp_video_file.name)
|
76 |
-
|
77 |
-
|
78 |
-
# def transcribe_audio(video_path):
|
79 |
-
# """
|
80 |
-
# Extract audio from video file and transcribe using Whisper AI.
|
81 |
-
# """
|
82 |
-
# try:
|
83 |
-
# # Extract audio using ffmpeg
|
84 |
-
# audio_path = video_path.replace(".mp4", ".wav")
|
85 |
-
# command = [
|
86 |
-
# "ffmpeg",
|
87 |
-
# "-i", video_path,
|
88 |
-
# "-q:a", "0",
|
89 |
-
# "-map", "a",
|
90 |
-
# audio_path
|
91 |
-
# ]
|
92 |
-
# subprocess.run(command, check=True)
|
93 |
-
# print(f"Audio extracted to: {audio_path}")
|
94 |
-
|
95 |
-
# # Transcribe audio using Whisper AI
|
96 |
-
# print("Transcribing audio...")
|
97 |
-
# result = whisper_model.transcribe(audio_path)
|
98 |
-
|
99 |
-
# # Clean up audio file after transcription
|
100 |
-
# if os.path.exists(audio_path):
|
101 |
-
# os.remove(audio_path)
|
102 |
-
|
103 |
-
# return result.get("text", "").strip()
|
104 |
-
|
105 |
-
# except Exception as e:
|
106 |
-
# print(f"Error in transcription: {e}")
|
107 |
-
# return None
|
108 |
|
109 |
def transcribe_audio(video_path):
|
110 |
"""
|
111 |
Transcribe audio directly from a video file using Whisper AI.
|
112 |
"""
|
113 |
try:
|
114 |
-
# Transcribe audio from video directly using Whisper AI
|
115 |
print(f"Transcribing video: {video_path}")
|
116 |
result = whisper_model.transcribe(video_path)
|
117 |
-
|
118 |
return result['text']
|
119 |
-
|
120 |
except Exception as e:
|
121 |
-
print(f"Error in
|
122 |
return None
|
123 |
|
124 |
|
125 |
-
|
126 |
def query_gemini_api(transcription):
|
127 |
"""
|
128 |
Send transcription text to Gemini API and fetch structured recipe information.
|
@@ -143,20 +114,14 @@ def query_gemini_api(transcription):
|
|
143 |
f"Text: {transcription}\n"
|
144 |
)
|
145 |
|
146 |
-
# Prepare the payload and headers
|
147 |
payload = {
|
148 |
"contents": [
|
149 |
-
{
|
150 |
-
"parts": [
|
151 |
-
{"text": prompt}
|
152 |
-
]
|
153 |
-
}
|
154 |
]
|
155 |
}
|
156 |
headers = {"Content-Type": "application/json"}
|
157 |
|
158 |
# Send request to Gemini API
|
159 |
-
print("Querying Gemini API...")
|
160 |
response = requests.post(
|
161 |
f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
|
162 |
json=payload,
|
@@ -170,8 +135,8 @@ def query_gemini_api(transcription):
|
|
170 |
|
171 |
except requests.exceptions.RequestException as e:
|
172 |
print(f"Error querying Gemini API: {e}")
|
173 |
-
return {"
|
174 |
|
175 |
|
176 |
if __name__ == '__main__':
|
177 |
-
app.run(debug=True)
|
|
|
4 |
import requests
|
5 |
from flask import Flask, request, jsonify, send_file
|
6 |
import tempfile
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
warnings.filterwarnings("ignore", category=UserWarning, module="whisper")
|
10 |
+
|
11 |
|
12 |
app = Flask(__name__)
|
13 |
|
14 |
# Gemini API settings
|
|
|
|
|
|
|
15 |
load_dotenv()
|
|
|
|
|
16 |
API_KEY = os.getenv("FIRST_API_KEY")
|
17 |
|
18 |
# Ensure the API key is loaded correctly
|
|
|
24 |
|
25 |
# Load Whisper AI model at startup
|
26 |
print("Loading Whisper AI model...")
|
27 |
+
whisper_model = whisper.load_model("base")
|
28 |
print("Whisper AI model loaded successfully.")
|
29 |
|
|
|
30 |
# Define the "/" endpoint for health check
|
31 |
@app.route("/", methods=["GET"])
|
32 |
def health_check():
|
33 |
return jsonify({"status": "success", "message": "API is running successfully!"}), 200
|
34 |
|
35 |
|
36 |
+
def process_video_in_background(video_file, temp_video_file_name):
|
37 |
+
"""
|
38 |
+
This function is executed in a separate thread to handle the long-running
|
39 |
+
video processing tasks such as transcription and querying the Gemini API.
|
40 |
+
"""
|
41 |
+
try:
|
42 |
+
transcription = transcribe_audio(temp_video_file_name)
|
43 |
+
|
44 |
+
if not transcription:
|
45 |
+
print("Audio transcription failed")
|
46 |
+
return
|
47 |
+
|
48 |
+
structured_data = query_gemini_api(transcription)
|
49 |
+
|
50 |
+
# Send structured data back or store it in a database, depending on your use case
|
51 |
+
print("Processing complete. Structured data:", structured_data)
|
52 |
+
|
53 |
+
except Exception as e:
|
54 |
+
print(f"Error processing video: {e}")
|
55 |
+
|
56 |
+
finally:
|
57 |
+
# Clean up temporary files
|
58 |
+
if os.path.exists(temp_video_file_name):
|
59 |
+
os.remove(temp_video_file_name)
|
60 |
+
|
61 |
|
62 |
@app.route('/process-video', methods=['POST'])
|
63 |
def process_video():
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
if 'video' not in request.files:
|
65 |
+
return jsonify({"error": "No video file provided"}), 400
|
66 |
|
67 |
video_file = request.files['video']
|
68 |
|
|
|
72 |
video_file.save(temp_video_file.name)
|
73 |
print(f"Video file saved: {temp_video_file.name}")
|
74 |
|
75 |
+
# Start the video processing in a background thread
|
76 |
+
threading.Thread(target=process_video_in_background, args=(video_file, temp_video_file.name)).start()
|
|
|
|
|
|
|
77 |
|
78 |
+
return jsonify({"message": "Video is being processed in the background."}), 202
|
|
|
|
|
|
|
79 |
|
80 |
except Exception as e:
|
81 |
+
return jsonify({"error": str(e)}), 500
|
82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
def transcribe_audio(video_path):
|
85 |
"""
|
86 |
Transcribe audio directly from a video file using Whisper AI.
|
87 |
"""
|
88 |
try:
|
|
|
89 |
print(f"Transcribing video: {video_path}")
|
90 |
result = whisper_model.transcribe(video_path)
|
|
|
91 |
return result['text']
|
|
|
92 |
except Exception as e:
|
93 |
+
print(f"Error in transcription: {e}")
|
94 |
return None
|
95 |
|
96 |
|
|
|
97 |
def query_gemini_api(transcription):
|
98 |
"""
|
99 |
Send transcription text to Gemini API and fetch structured recipe information.
|
|
|
114 |
f"Text: {transcription}\n"
|
115 |
)
|
116 |
|
|
|
117 |
payload = {
|
118 |
"contents": [
|
119 |
+
{"parts": [{"text": prompt}]}
|
|
|
|
|
|
|
|
|
120 |
]
|
121 |
}
|
122 |
headers = {"Content-Type": "application/json"}
|
123 |
|
124 |
# Send request to Gemini API
|
|
|
125 |
response = requests.post(
|
126 |
f"{GEMINI_API_ENDPOINT}?key={GEMINI_API_KEY}",
|
127 |
json=payload,
|
|
|
135 |
|
136 |
except requests.exceptions.RequestException as e:
|
137 |
print(f"Error querying Gemini API: {e}")
|
138 |
+
return {"error": str(e)}
|
139 |
|
140 |
|
141 |
if __name__ == '__main__':
|
142 |
+
app.run(debug=True)
|