Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -151,9 +151,7 @@
|
|
151 |
|
152 |
|
153 |
# Above code is without polling and sleep
|
154 |
-
|
155 |
import os
|
156 |
-
import subprocess
|
157 |
import whisper
|
158 |
import requests
|
159 |
from flask import Flask, request, jsonify, render_template
|
@@ -161,6 +159,7 @@ import tempfile
|
|
161 |
|
162 |
app = Flask(__name__)
|
163 |
print("APP IS RUNNING, ANIKET")
|
|
|
164 |
# Gemini API settings
|
165 |
from dotenv import load_dotenv
|
166 |
# Load the .env file
|
@@ -194,39 +193,31 @@ def health_check():
|
|
194 |
def mbsa():
|
195 |
return render_template("mbsa.html")
|
196 |
|
197 |
-
@app.route('/process-
|
198 |
-
def
|
199 |
-
print("GOT THE PROCESS
|
200 |
"""
|
201 |
-
Flask endpoint to process
|
202 |
-
1.
|
203 |
2. Send transcription to Gemini API for recipe information extraction.
|
204 |
3. Return structured data in the response.
|
205 |
"""
|
206 |
|
207 |
-
if '
|
208 |
-
return jsonify({"error": "No
|
209 |
|
210 |
-
|
211 |
-
print("
|
212 |
try:
|
213 |
print("SAVING THE FILE TEMPO, ANIKET")
|
214 |
-
# Step 1: Save
|
215 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".
|
216 |
-
|
217 |
-
print(f"
|
218 |
|
219 |
-
|
220 |
-
# Step 2:
|
221 |
-
|
222 |
-
print("AUDIO PATH FROM LINE 221, ANIKET", audio_path)
|
223 |
-
|
224 |
-
if not audio_path:
|
225 |
-
return jsonify({"error": "Audio extraction failed"}), 500
|
226 |
-
|
227 |
-
print("STARTING TRANSCRIPTION, GOT THE .WAV AUDIO PATH THAT WAS STORED TEMPO, ANIKET")
|
228 |
-
# Step 3: Transcribe the audio using Whisper AI (waiting for completion)
|
229 |
-
transcription = transcribe_audio(audio_path)
|
230 |
|
231 |
print("BEFORE THE transcription FAILED ERROR, CHECKING IF I GOT THE TRANSCRIPTION", transcription)
|
232 |
|
@@ -236,11 +227,11 @@ def process_video():
|
|
236 |
print("GOT THE transcription")
|
237 |
|
238 |
print("Starting the GEMINI REQUEST TO STRUCTURE IT")
|
239 |
-
# Step
|
240 |
structured_data = query_gemini_api(transcription)
|
241 |
|
242 |
print("GOT THE STRUCTURED DATA", structured_data)
|
243 |
-
# Step
|
244 |
return jsonify(structured_data)
|
245 |
|
246 |
except Exception as e:
|
@@ -248,42 +239,16 @@ def process_video():
|
|
248 |
|
249 |
finally:
|
250 |
# Clean up temporary files
|
251 |
-
if os.path.exists(
|
252 |
-
os.remove(
|
253 |
-
|
254 |
-
|
255 |
-
def extract_audio(video_path):
|
256 |
-
"""
|
257 |
-
Extract audio from video using ffmpeg and save as WAV file.
|
258 |
-
"""
|
259 |
-
try:
|
260 |
-
# Define the audio output path
|
261 |
-
audio_path = video_path.replace(".mp4", ".wav")
|
262 |
-
command = [
|
263 |
-
"ffmpeg",
|
264 |
-
"-i", video_path,
|
265 |
-
"-q:a", "0",
|
266 |
-
"-map", "a",
|
267 |
-
audio_path
|
268 |
-
]
|
269 |
-
|
270 |
-
# Run the command and wait for it to finish (synchronous)
|
271 |
-
subprocess.run(command, check=True)
|
272 |
-
print(f"Audio extracted to: {audio_path}")
|
273 |
-
return audio_path
|
274 |
-
|
275 |
-
except Exception as e:
|
276 |
-
print(f"Error extracting audio: {e}")
|
277 |
-
return None
|
278 |
|
279 |
|
280 |
def transcribe_audio(audio_path):
|
281 |
"""
|
282 |
Transcribe audio using Whisper AI.
|
283 |
"""
|
284 |
-
print("CAME IN THE transcribe audio
|
285 |
try:
|
286 |
-
|
287 |
# Transcribe audio using Whisper AI
|
288 |
print("Transcribing audio...")
|
289 |
result = whisper_model.transcribe(audio_path)
|
@@ -348,4 +313,4 @@ def query_gemini_api(transcription):
|
|
348 |
|
349 |
|
350 |
if __name__ == '__main__':
|
351 |
-
app.run(debug=True)
|
|
|
151 |
|
152 |
|
153 |
# Above code is without polling and sleep
|
|
|
154 |
import os
|
|
|
155 |
import whisper
|
156 |
import requests
|
157 |
from flask import Flask, request, jsonify, render_template
|
|
|
159 |
|
160 |
app = Flask(__name__)
|
161 |
print("APP IS RUNNING, ANIKET")
|
162 |
+
|
163 |
# Gemini API settings
|
164 |
from dotenv import load_dotenv
|
165 |
# Load the .env file
|
|
|
193 |
def mbsa():
|
194 |
return render_template("mbsa.html")
|
195 |
|
196 |
+
@app.route('/process-audio', methods=['POST'])
|
197 |
+
def process_audio():
|
198 |
+
print("GOT THE PROCESS AUDIO REQUEST, ANIKET")
|
199 |
"""
|
200 |
+
Flask endpoint to process audio:
|
201 |
+
1. Transcribe provided audio file using Whisper AI.
|
202 |
2. Send transcription to Gemini API for recipe information extraction.
|
203 |
3. Return structured data in the response.
|
204 |
"""
|
205 |
|
206 |
+
if 'audio' not in request.files:
|
207 |
+
return jsonify({"error": "No audio file provided"}), 400
|
208 |
|
209 |
+
audio_file = request.files['audio']
|
210 |
+
print("AUDIO FILE NAME: ", audio_file)
|
211 |
try:
|
212 |
print("SAVING THE FILE TEMPO, ANIKET")
|
213 |
+
# Step 1: Save audio to a temporary file
|
214 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio_file:
|
215 |
+
audio_file.save(temp_audio_file.name)
|
216 |
+
print(f"Audio file saved: {temp_audio_file.name}")
|
217 |
|
218 |
+
print("STARTING TRANSCRIPTION, ANIKET")
|
219 |
+
# Step 2: Transcribe the audio using Whisper AI
|
220 |
+
transcription = transcribe_audio(temp_audio_file.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
221 |
|
222 |
print("BEFORE THE transcription FAILED ERROR, CHECKING IF I GOT THE TRANSCRIPTION", transcription)
|
223 |
|
|
|
227 |
print("GOT THE transcription")
|
228 |
|
229 |
print("Starting the GEMINI REQUEST TO STRUCTURE IT")
|
230 |
+
# Step 3: Generate structured recipe information using Gemini API
|
231 |
structured_data = query_gemini_api(transcription)
|
232 |
|
233 |
print("GOT THE STRUCTURED DATA", structured_data)
|
234 |
+
# Step 4: Return the structured data
|
235 |
return jsonify(structured_data)
|
236 |
|
237 |
except Exception as e:
|
|
|
239 |
|
240 |
finally:
|
241 |
# Clean up temporary files
|
242 |
+
if os.path.exists(temp_audio_file.name):
|
243 |
+
os.remove(temp_audio_file.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
244 |
|
245 |
|
246 |
def transcribe_audio(audio_path):
|
247 |
"""
|
248 |
Transcribe audio using Whisper AI.
|
249 |
"""
|
250 |
+
print("CAME IN THE transcribe audio function")
|
251 |
try:
|
|
|
252 |
# Transcribe audio using Whisper AI
|
253 |
print("Transcribing audio...")
|
254 |
result = whisper_model.transcribe(audio_path)
|
|
|
313 |
|
314 |
|
315 |
if __name__ == '__main__':
|
316 |
+
app.run(debug=True)
|