File size: 6,307 Bytes
7337af2
 
 
 
 
 
 
 
 
 
5b43d30
 
 
 
 
 
 
 
7337af2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ebc0c5
5b43d30
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ebc0c5
 
 
7337af2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02e1cbf
 
7337af2
 
 
5b43d30
7337af2
 
1bb2c10
7337af2
 
 
9b5e1d8
7337af2
 
c3e8f96
9b5e1d8
7337af2
 
 
9b5e1d8
7337af2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5e1d8
7337af2
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
from groq import Groq
import gradio as gr 
from transformers import pipeline
import pytesseract
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from typing import List
import requests

import torch
from transformers import BertTokenizer, BertModel
import torch.nn.functional as F

# Load pre-trained BERT model and tokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')


# Initialize Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# System prompt for Groq
system_prompt = {
    "role": "system",
    "content": "You are a useful assistant. You reply with efficient answers."
}

# Function to interact with Groq for generating response
async def chat_groq(message, history):
    messages = [system_prompt]

    for msg in history:
        messages.append({"role": "user", "content": str(msg[0])})
        messages.append({"role": "assistant", "content": str(msg[1])})

    messages.append({"role": "user", "content": str(message)})

    response_content = ''
    
    stream = client.chat.completions.create(
        model="llama3-70b-8192",
        messages=messages,
        max_tokens=1024,
        temperature=1.3,
        stream=True
    )

    for chunk in stream:
        content = chunk.choices[0].delta.content
        if content:
            response_content += chunk.choices[0].delta.content
        yield response_content

# Extract text from an image using Tesseract
def extract_text_from_image(filepath: str, languages: List[str]):
    image = Image.open(filepath)
    lang_str = '+'.join(languages)  # Join languages for Tesseract
    return pytesseract.image_to_string(image=image, lang=lang_str)



# Function to get BERT embeddings
def get_bert_embedding(text):
    inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True)
    with torch.no_grad():
        outputs = model(**inputs)
    # Get the embeddings from the last hidden state
    embeddings = outputs.last_hidden_state.mean(dim=1)
    return embeddings

# Function to calculate cosine similarity
def calculate_cosine_similarity(embedding1, embedding2):
    similarity = F.cosine_similarity(embedding1, embedding2)
    return similarity.item()

# Function to compare logic of student and teacher answers
def compare_answers(student_answer, teacher_answer):
    student_embedding = get_bert_embedding(student_answer)
    teacher_embedding = get_bert_embedding(teacher_answer)
    similarity_score = calculate_cosine_similarity(student_embedding, teacher_embedding)
    return similarity_score




# Assign badges based on the grade
def assign_badge(grade):
    if grade == 5:
        return "Gold Badge 🌟"
    elif grade == 4:
        return "Silver Badge πŸ₯ˆ"
    elif grade == 3:
        return "Bronze Badge πŸ₯‰"
    else:
        return "Keep Improving Badge πŸ’ͺ"


# Categorize feedback into clarity, completeness, and accuracy
def detailed_feedback(similarity_score):
    if similarity_score >= 0.9:
        return {"Clarity": "Excellent", "Completeness": "Complete", "Accuracy": "Accurate"}
    elif similarity_score >= 0.8:
        return {"Clarity": "Good", "Completeness": "Almost Complete", "Accuracy": "Mostly Accurate"}
    elif similarity_score >= 0.7:
        return {"Clarity": "Fair", "Completeness": "Partial", "Accuracy": "Some Errors"}
    else:
        return {"Clarity": "Needs Improvement", "Completeness": "Incomplete", "Accuracy": "Inaccurate"}

# Assign grades based on similarity score
def get_grade(similarity_score):
    if similarity_score >= 0.9:
        return 5
    elif similarity_score >= 0.8:
        return 4
    elif similarity_score >= 0.7:
        return 3
    elif similarity_score >= 0.6:
        return 2
    else:
        return 1



# Function to evaluate student's answer by comparing it to a model answer
def evaluate_answer(image, languages, model_answer):
    student_answer = extract_text_from_image(image, languages)
    similarity_score = compare_answers(student_answer, model_answer)
    grade = get_grade(similarity_score)
    feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
    # visual_feedback = generate_sequence_feedback(student_answer, model_answer)
    badge = assign_badge(grade)
    detailed_feedback_msg = detailed_feedback(similarity_score)
    prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
    return grade, similarity_score * 100, feedback, badge, detailed_feedback_msg, prompt

# Main interface function for Gradio
async def gradio_interface(image, languages: List[str], model_answer="The process of photosynthesis helps plants produce glucose using sunlight.", prompt="", history=[]):
    grade, similarity_score, feedback, badge, detailed_feedback_msg, prompt = evaluate_answer(image, languages, model_answer)
    response = ""
    async for result in chat_groq(prompt, history):
        response = result  # Get the Groq response
    return grade, similarity_score, feedback, badge, detailed_feedback_msg, response

# Get available Tesseract languages
language_choices = pytesseract.get_languages()

# Define Gradio interface
interface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Image(type="filepath", label="Input"), 
        gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='Language'),
        gr.Textbox(lines=2, placeholder="Enter your model answer here", label="Model Answer"),
        gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
    ],
    outputs=[
        gr.Text(label="Grade"), 
        gr.Number(label="Similarity Score (%)"), 
        gr.Text(label="Feedback"), 
        # gr.HTML(label="Visual Feedback"), 
        gr.Text(label="Badge"), 
        gr.JSON(label="Detailed Feedback"), 
        gr.Text(label="Generated Response")
    ],
    title="Enhanced Automated Grading System",
    description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, visual feedback, badge, and detailed feedback based on the model answer.",
    live=True
)

if __name__ == "__main__":
    interface.queue()
    interface.launch()