Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import difflib
|
3 |
+
from groq import Groq
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import pipeline
|
6 |
+
import pytesseract
|
7 |
+
from sentence_transformers import SentenceTransformer, util
|
8 |
+
from PIL import Image
|
9 |
+
from typing import List
|
10 |
+
import requests
|
11 |
+
|
12 |
+
# Initialize sentence transformer model
|
13 |
+
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
14 |
+
|
15 |
+
# Initialize Groq client
|
16 |
+
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
17 |
+
|
18 |
+
# System prompt for Groq
|
19 |
+
system_prompt = {
|
20 |
+
"role": "system",
|
21 |
+
"content": "You are a useful assistant. You reply with efficient answers."
|
22 |
+
}
|
23 |
+
|
24 |
+
# Function to interact with Groq for generating response
|
25 |
+
async def chat_groq(message, history):
|
26 |
+
messages = [system_prompt]
|
27 |
+
|
28 |
+
for msg in history:
|
29 |
+
messages.append({"role": "user", "content": str(msg[0])})
|
30 |
+
messages.append({"role": "assistant", "content": str(msg[1])})
|
31 |
+
|
32 |
+
messages.append({"role": "user", "content": str(message)})
|
33 |
+
|
34 |
+
response_content = ''
|
35 |
+
|
36 |
+
stream = client.chat.completions.create(
|
37 |
+
model="llama3-70b-8192",
|
38 |
+
messages=messages,
|
39 |
+
max_tokens=1024,
|
40 |
+
temperature=1.3,
|
41 |
+
stream=True
|
42 |
+
)
|
43 |
+
|
44 |
+
for chunk in stream:
|
45 |
+
content = chunk.choices[0].delta.content
|
46 |
+
if content:
|
47 |
+
response_content += chunk.choices[0].delta.content
|
48 |
+
yield response_content
|
49 |
+
|
50 |
+
# Extract text from an image using Tesseract
|
51 |
+
def extract_text_from_image(filepath: str, languages: List[str]):
|
52 |
+
image = Image.open(filepath)
|
53 |
+
lang_str = '+'.join(languages) # Join languages for Tesseract
|
54 |
+
return pytesseract.image_to_string(image=image, lang=lang_str)
|
55 |
+
|
56 |
+
# Function to get embeddings for text using SentenceTransformer
|
57 |
+
def get_embedding(text):
|
58 |
+
return model1.encode(text, convert_to_tensor=True)
|
59 |
+
|
60 |
+
# Calculate similarity between two texts using cosine similarity
|
61 |
+
def calculate_similarity(text1, text2):
|
62 |
+
embedding1 = get_embedding(text1)
|
63 |
+
embedding2 = get_embedding(text2)
|
64 |
+
similarity = util.pytorch_cos_sim(embedding1, embedding2)
|
65 |
+
return similarity.item()
|
66 |
+
|
67 |
+
# Assign badges based on the grade
|
68 |
+
def assign_badge(grade):
|
69 |
+
if grade == 5:
|
70 |
+
return "Gold Badge 🌟"
|
71 |
+
elif grade == 4:
|
72 |
+
return "Silver Badge 🥈"
|
73 |
+
elif grade == 3:
|
74 |
+
return "Bronze Badge 🥉"
|
75 |
+
else:
|
76 |
+
return "Keep Improving Badge 💪"
|
77 |
+
|
78 |
+
# Generate visual feedback by comparing answers
|
79 |
+
def generate_visual_feedback(student_answer, model_answer):
|
80 |
+
diff = difflib.ndiff(student_answer.split(), model_answer.split())
|
81 |
+
highlighted_diff = ' '.join(
|
82 |
+
[f"**{word}**" if word.startswith('-') else word for word in diff if not word.startswith('?')]
|
83 |
+
)
|
84 |
+
return highlighted_diff
|
85 |
+
|
86 |
+
# Categorize feedback into clarity, completeness, and accuracy
|
87 |
+
def detailed_feedback(similarity_score):
|
88 |
+
if similarity_score >= 0.9:
|
89 |
+
return {"Clarity": "Excellent", "Completeness": "Complete", "Accuracy": "Accurate"}
|
90 |
+
elif similarity_score >= 0.8:
|
91 |
+
return {"Clarity": "Good", "Completeness": "Almost Complete", "Accuracy": "Mostly Accurate"}
|
92 |
+
elif similarity_score >= 0.7:
|
93 |
+
return {"Clarity": "Fair", "Completeness": "Partial", "Accuracy": "Some Errors"}
|
94 |
+
else:
|
95 |
+
return {"Clarity": "Needs Improvement", "Completeness": "Incomplete", "Accuracy": "Inaccurate"}
|
96 |
+
|
97 |
+
# Assign grades based on similarity score
|
98 |
+
def get_grade(similarity_score):
|
99 |
+
if similarity_score >= 0.9:
|
100 |
+
return 5
|
101 |
+
elif similarity_score >= 0.8:
|
102 |
+
return 4
|
103 |
+
elif similarity_score >= 0.7:
|
104 |
+
return 3
|
105 |
+
elif similarity_score >= 0.6:
|
106 |
+
return 2
|
107 |
+
else:
|
108 |
+
return 1
|
109 |
+
|
110 |
+
# Function to evaluate student's answer by comparing it to a model answer
|
111 |
+
def evaluate_answer(image, languages, model_answer):
|
112 |
+
student_answer = extract_text_from_image(image, languages)
|
113 |
+
similarity_score = calculate_similarity(student_answer, model_answer)
|
114 |
+
grade = get_grade(similarity_score)
|
115 |
+
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
|
116 |
+
visual_feedback = generate_visual_feedback(student_answer, model_answer)
|
117 |
+
badge = assign_badge(grade)
|
118 |
+
detailed_feedback_msg = detailed_feedback(similarity_score)
|
119 |
+
prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
|
120 |
+
return grade, similarity_score * 100, feedback, visual_feedback, badge, detailed_feedback_msg, prompt
|
121 |
+
|
122 |
+
# Main interface function for Gradio
|
123 |
+
async def gradio_interface(image, languages: List[str], model_answer, prompt="", history=[]):
|
124 |
+
grade, similarity_score, feedback, visual_feedback, badge, detailed_feedback_msg, prompt = evaluate_answer(image, languages, model_answer)
|
125 |
+
response = ""
|
126 |
+
async for result in chat_groq(prompt, history):
|
127 |
+
response = result # Get the Groq response
|
128 |
+
return grade, similarity_score, feedback, visual_feedback, badge, detailed_feedback_msg, response
|
129 |
+
|
130 |
+
# Get available Tesseract languages
|
131 |
+
language_choices = pytesseract.get_languages()
|
132 |
+
|
133 |
+
# Define Gradio interface
|
134 |
+
interface = gr.Interface(
|
135 |
+
fn=gradio_interface,
|
136 |
+
inputs=[
|
137 |
+
gr.Image(type="filepath", label="Input"),
|
138 |
+
gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='Language'),
|
139 |
+
gr.Textbox(lines=2, placeholder="Enter your model answer here", label="Model Answer"),
|
140 |
+
gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
|
141 |
+
],
|
142 |
+
outputs=[
|
143 |
+
gr.Text(label="Grade"),
|
144 |
+
gr.Number(label="Similarity Score (%)"),
|
145 |
+
gr.Text(label="Feedback"),
|
146 |
+
gr.HTML(label="Visual Feedback"),
|
147 |
+
gr.Text(label="Badge"),
|
148 |
+
gr.JSON(label="Detailed Feedback"),
|
149 |
+
gr.Text(label="Generated Response")
|
150 |
+
],
|
151 |
+
title="Enhanced Automated Grading System",
|
152 |
+
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, visual feedback, badge, and detailed feedback based on the model answer.",
|
153 |
+
live=True
|
154 |
+
)
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
interface.queue()
|
158 |
+
interface.launch()
|