Update app.py
Browse files
app.py
CHANGED
@@ -128,15 +128,15 @@ def evaluate_answer(image, languages, model_answer):
|
|
128 |
badge = assign_badge(grade)
|
129 |
detailed_feedback_msg = detailed_feedback(similarity_score)
|
130 |
prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
|
131 |
-
return grade, similarity_score * 100, feedback,
|
132 |
|
133 |
# Main interface function for Gradio
|
134 |
async def gradio_interface(image, languages: List[str], model_answer="The process of photosynthesis helps plants produce glucose using sunlight.", prompt="", history=[]):
|
135 |
-
grade, similarity_score, feedback,
|
136 |
response = ""
|
137 |
async for result in chat_groq(prompt, history):
|
138 |
response = result # Get the Groq response
|
139 |
-
return grade, similarity_score, feedback,
|
140 |
|
141 |
# Get available Tesseract languages
|
142 |
language_choices = pytesseract.get_languages()
|
@@ -154,7 +154,7 @@ interface = gr.Interface(
|
|
154 |
gr.Text(label="Grade"),
|
155 |
gr.Number(label="Similarity Score (%)"),
|
156 |
gr.Text(label="Feedback"),
|
157 |
-
gr.HTML(label="Visual Feedback"),
|
158 |
gr.Text(label="Badge"),
|
159 |
gr.JSON(label="Detailed Feedback"),
|
160 |
gr.Text(label="Generated Response")
|
|
|
128 |
badge = assign_badge(grade)
|
129 |
detailed_feedback_msg = detailed_feedback(similarity_score)
|
130 |
prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
|
131 |
+
return grade, similarity_score * 100, feedback, badge, detailed_feedback_msg, prompt
|
132 |
|
133 |
# Main interface function for Gradio
|
134 |
async def gradio_interface(image, languages: List[str], model_answer="The process of photosynthesis helps plants produce glucose using sunlight.", prompt="", history=[]):
|
135 |
+
grade, similarity_score, feedback, badge, detailed_feedback_msg, prompt = evaluate_answer(image, languages, model_answer)
|
136 |
response = ""
|
137 |
async for result in chat_groq(prompt, history):
|
138 |
response = result # Get the Groq response
|
139 |
+
return grade, similarity_score, feedback, badge, detailed_feedback_msg, response
|
140 |
|
141 |
# Get available Tesseract languages
|
142 |
language_choices = pytesseract.get_languages()
|
|
|
154 |
gr.Text(label="Grade"),
|
155 |
gr.Number(label="Similarity Score (%)"),
|
156 |
gr.Text(label="Feedback"),
|
157 |
+
# gr.HTML(label="Visual Feedback"),
|
158 |
gr.Text(label="Badge"),
|
159 |
gr.JSON(label="Detailed Feedback"),
|
160 |
gr.Text(label="Generated Response")
|