Garvitj commited on
Commit
9b5e1d8
·
verified ·
1 Parent(s): 02e1cbf

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -128,15 +128,15 @@ def evaluate_answer(image, languages, model_answer):
128
  badge = assign_badge(grade)
129
  detailed_feedback_msg = detailed_feedback(similarity_score)
130
  prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
131
- return grade, similarity_score * 100, feedback, visual_feedback, badge, detailed_feedback_msg, prompt
132
 
133
  # Main interface function for Gradio
134
  async def gradio_interface(image, languages: List[str], model_answer="The process of photosynthesis helps plants produce glucose using sunlight.", prompt="", history=[]):
135
- grade, similarity_score, feedback, visual_feedback, badge, detailed_feedback_msg, prompt = evaluate_answer(image, languages, model_answer)
136
  response = ""
137
  async for result in chat_groq(prompt, history):
138
  response = result # Get the Groq response
139
- return grade, similarity_score, feedback, visual_feedback, badge, detailed_feedback_msg, response
140
 
141
  # Get available Tesseract languages
142
  language_choices = pytesseract.get_languages()
@@ -154,7 +154,7 @@ interface = gr.Interface(
154
  gr.Text(label="Grade"),
155
  gr.Number(label="Similarity Score (%)"),
156
  gr.Text(label="Feedback"),
157
- gr.HTML(label="Visual Feedback"),
158
  gr.Text(label="Badge"),
159
  gr.JSON(label="Detailed Feedback"),
160
  gr.Text(label="Generated Response")
 
128
  badge = assign_badge(grade)
129
  detailed_feedback_msg = detailed_feedback(similarity_score)
130
  prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
131
+ return grade, similarity_score * 100, feedback, badge, detailed_feedback_msg, prompt
132
 
133
  # Main interface function for Gradio
134
  async def gradio_interface(image, languages: List[str], model_answer="The process of photosynthesis helps plants produce glucose using sunlight.", prompt="", history=[]):
135
+ grade, similarity_score, feedback, badge, detailed_feedback_msg, prompt = evaluate_answer(image, languages, model_answer)
136
  response = ""
137
  async for result in chat_groq(prompt, history):
138
  response = result # Get the Groq response
139
+ return grade, similarity_score, feedback, badge, detailed_feedback_msg, response
140
 
141
  # Get available Tesseract languages
142
  language_choices = pytesseract.get_languages()
 
154
  gr.Text(label="Grade"),
155
  gr.Number(label="Similarity Score (%)"),
156
  gr.Text(label="Feedback"),
157
+ # gr.HTML(label="Visual Feedback"),
158
  gr.Text(label="Badge"),
159
  gr.JSON(label="Detailed Feedback"),
160
  gr.Text(label="Generated Response")