# import gradio as gr | |
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
# import torch | |
# import numpy as np | |
# import cv2 | |
# from PIL import Image | |
# import pytesseract | |
# from sentence_transformers import SentenceTransformer, util | |
# import io | |
# from typing import List | |
# def extract_text_from_image(filepath: str, languages: List[str]): | |
# image = Image.open(filepath) | |
# return pytesseract.image_to_string(image=image, lang=', '.join(languages)) | |
# # tess.pytesseract.tesseract_cmd = r"tesseract" | |
# import requests | |
# API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2" | |
# headers = {"Authorization": "hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"} | |
# def query(payload): | |
# response = requests.post(API_URL, headers=headers, json=payload) | |
# return response.json() | |
# # output = query({ | |
# # "inputs": "Can you please let us know more details about your ", | |
# # }) | |
# def generate_response(prompt): | |
# # Generate response from the API | |
# response = query({"inputs":prompt}) | |
# return response[0]['generated_text'] | |
# def get_embedding(text): | |
# return model1.encode(text, convert_to_tensor=True) | |
# def calculate_similarity(text1, text2): | |
# embedding1 = get_embedding(text1) | |
# embedding2 = get_embedding(text2) | |
# similarity = util.pytorch_cos_sim(embedding1, embedding2) | |
# return similarity.item() | |
# def get_grade(similarity_score): | |
# if similarity_score >= 0.9: | |
# return 5 | |
# elif similarity_score >= 0.8: | |
# return 4 | |
# elif similarity_score >= 0.7: | |
# return 3 | |
# elif similarity_score >= 0.6: | |
# return 2 | |
# else: | |
# return 1 | |
# def evaluate_answer(image,languages): | |
# student_answer = extract_text_from_image(image,languages) | |
# model_answer = "The process of photosynthesis helps plants produce glucose using sunlight." | |
# similarity_score = calculate_similarity(student_answer, model_answer) | |
# grade = get_grade(similarity_score) | |
# feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}" | |
# return grade, similarity_score * 100, feedback | |
# def generate_response(prompt): | |
# # Generate response from the new model using the pipeline | |
# response = pipe(prompt, max_length=150, temperature=0.7) | |
# return response[0]['generated_text'] | |
# def gradio_interface(image, languages: List[str]): | |
# grade, similarity_score, feedback = evaluate_answer(image,languages) | |
# response = generate_response(prompt) | |
# return grade, similarity_score, response | |
# # # Define Gradio interface | |
# # interface = gr.Interface( | |
# # fn=gradio_interface, | |
# # inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your prompt here")], | |
# # outputs=[gr.Label(), gr.Label(), gr.Textbox(), gr.Textbox()], | |
# # live=True | |
# # ) | |
# language_choices = pytesseract.get_languages() | |
# interface = gr.Interface( | |
# fn=gradio_interface, | |
# inputs=[ | |
# gr.Image(type="filepath", label="Input"), | |
# gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language') | |
# ], | |
# outputs=[gr.Text(label="Grade"), gr.Number(label="Similarity Score (%)"), gr.Text(label="Feedback")], | |
# title="Automated Grading System", | |
# description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.", | |
# live=True | |
# ) | |
# if __name__ == "__main__": | |
# interface.launch() | |
import gradio as gr | |
from transformers import pipeline | |
import pytesseract | |
from sentence_transformers import SentenceTransformer, util | |
from PIL import Image | |
from typing import List | |
import requests | |
# Initialize sentence transformer model | |
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
# Hugging Face API details | |
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2" | |
headers = {"Authorization": "Bearer hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"} | |
# Function to interact with Hugging Face API for GPT-2 | |
def query(payload): | |
response = requests.post(API_URL, headers=headers, json=payload) | |
return response.json() | |
# Function to generate text response from GPT-2 model using Hugging Face API | |
def generate_response(prompt): | |
response = query({"inputs": prompt}) | |
return response[0]['generated_text'] | |
# Extract text from an image using Tesseract | |
def extract_text_from_image(filepath: str, languages: List[str]): | |
image = Image.open(filepath) | |
lang_str = '+'.join(languages) # Join languages for Tesseract | |
return pytesseract.image_to_string(image=image, lang=lang_str) | |
# Function to get embeddings for text using SentenceTransformer | |
def get_embedding(text): | |
return model1.encode(text, convert_to_tensor=True) | |
# Calculate similarity between two texts using cosine similarity | |
def calculate_similarity(text1, text2): | |
embedding1 = get_embedding(text1) | |
embedding2 = get_embedding(text2) | |
similarity = util.pytorch_cos_sim(embedding1, embedding2) | |
return similarity.item() | |
# Assign grades based on similarity score | |
def get_grade(similarity_score): | |
if similarity_score >= 0.9: | |
return 5 | |
elif similarity_score >= 0.8: | |
return 4 | |
elif similarity_score >= 0.7: | |
return 3 | |
elif similarity_score >= 0.6: | |
return 2 | |
else: | |
return 1 | |
# Function to evaluate student's answer by comparing it to a model answer | |
def evaluate_answer(image, languages): | |
student_answer = extract_text_from_image(image, languages) | |
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight." | |
similarity_score = calculate_similarity(student_answer, model_answer) | |
grade = get_grade(similarity_score) | |
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}" | |
return grade, similarity_score * 100, feedback | |
# Main interface function for Gradio | |
def gradio_interface(image, languages: List[str], prompt): | |
grade, similarity_score, feedback = evaluate_answer(image, languages) | |
response = generate_response(prompt) | |
return grade, similarity_score, feedback, response | |
# Get available Tesseract languages | |
language_choices = pytesseract.get_languages() | |
# Define Gradio interface | |
interface = gr.Interface( | |
fn=gradio_interface, | |
inputs=[ | |
gr.Image(type="filepath", label="Input"), | |
gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'), | |
gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt") | |
], | |
outputs=[ | |
gr.Text(label="Grade"), | |
gr.Number(label="Similarity Score (%)"), | |
gr.Text(label="Feedback"), | |
gr.Text(label="Generated Response") | |
], | |
title="Automated Grading System", | |
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.", | |
live=True | |
) | |
if __name__ == "__main__": | |
interface.launch() | |