Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import
|
3 |
-
import torch
|
4 |
-
import numpy as np
|
5 |
-
import cv2
|
6 |
-
from PIL import Image
|
7 |
import pytesseract
|
8 |
from sentence_transformers import SentenceTransformer, util
|
9 |
-
import
|
10 |
from typing import List
|
11 |
-
|
12 |
-
def extract_text_from_image(filepath: str, languages: List[str]):
|
13 |
-
image = Image.open(filepath)
|
14 |
-
return pytesseract.image_to_string(image=image, lang=', '.join(languages))
|
15 |
-
|
16 |
-
# tess.pytesseract.tesseract_cmd = r"tesseract"
|
17 |
-
|
18 |
import requests
|
19 |
|
|
|
|
|
|
|
|
|
20 |
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
|
21 |
-
headers = {"Authorization": "hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}
|
22 |
|
|
|
23 |
def query(payload):
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
# output = query({
|
28 |
-
# "inputs": "Can you please let us know more details about your ",
|
29 |
-
# })
|
30 |
|
|
|
31 |
def generate_response(prompt):
|
32 |
-
|
33 |
-
response = query({"inputs":prompt})
|
34 |
return response[0]['generated_text']
|
35 |
|
|
|
|
|
|
|
|
|
|
|
36 |
|
|
|
37 |
def get_embedding(text):
|
38 |
return model1.encode(text, convert_to_tensor=True)
|
39 |
|
|
|
40 |
def calculate_similarity(text1, text2):
|
41 |
embedding1 = get_embedding(text1)
|
42 |
embedding2 = get_embedding(text2)
|
43 |
similarity = util.pytorch_cos_sim(embedding1, embedding2)
|
44 |
return similarity.item()
|
45 |
|
|
|
46 |
def get_grade(similarity_score):
|
47 |
if similarity_score >= 0.9:
|
48 |
return 5
|
@@ -55,45 +159,43 @@ def get_grade(similarity_score):
|
|
55 |
else:
|
56 |
return 1
|
57 |
|
58 |
-
|
59 |
-
def evaluate_answer(image,languages):
|
60 |
-
student_answer = extract_text_from_image(image,languages)
|
61 |
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
|
62 |
similarity_score = calculate_similarity(student_answer, model_answer)
|
63 |
grade = get_grade(similarity_score)
|
64 |
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
|
65 |
return grade, similarity_score * 100, feedback
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
return response[0]['generated_text']
|
71 |
-
|
72 |
-
def gradio_interface(image, languages: List[str]):
|
73 |
-
grade, similarity_score, feedback = evaluate_answer(image,languages)
|
74 |
response = generate_response(prompt)
|
75 |
-
return grade, similarity_score, response
|
76 |
|
77 |
-
#
|
78 |
-
# interface = gr.Interface(
|
79 |
-
# fn=gradio_interface,
|
80 |
-
# inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your prompt here")],
|
81 |
-
# outputs=[gr.Label(), gr.Label(), gr.Textbox(), gr.Textbox()],
|
82 |
-
# live=True
|
83 |
-
# )
|
84 |
language_choices = pytesseract.get_languages()
|
|
|
|
|
85 |
interface = gr.Interface(
|
86 |
fn=gradio_interface,
|
87 |
inputs=[
|
88 |
gr.Image(type="filepath", label="Input"),
|
89 |
-
gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language')
|
90 |
-
|
91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
title="Automated Grading System",
|
93 |
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
|
94 |
live=True
|
95 |
)
|
96 |
-
|
97 |
|
98 |
if __name__ == "__main__":
|
99 |
interface.launch()
|
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
+
# import torch
|
4 |
+
# import numpy as np
|
5 |
+
# import cv2
|
6 |
+
# from PIL import Image
|
7 |
+
# import pytesseract
|
8 |
+
# from sentence_transformers import SentenceTransformer, util
|
9 |
+
# import io
|
10 |
+
# from typing import List
|
11 |
+
|
12 |
+
# def extract_text_from_image(filepath: str, languages: List[str]):
|
13 |
+
# image = Image.open(filepath)
|
14 |
+
# return pytesseract.image_to_string(image=image, lang=', '.join(languages))
|
15 |
+
|
16 |
+
# # tess.pytesseract.tesseract_cmd = r"tesseract"
|
17 |
+
|
18 |
+
# import requests
|
19 |
+
|
20 |
+
# API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
|
21 |
+
# headers = {"Authorization": "hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}
|
22 |
+
|
23 |
+
# def query(payload):
|
24 |
+
# response = requests.post(API_URL, headers=headers, json=payload)
|
25 |
+
# return response.json()
|
26 |
+
|
27 |
+
# # output = query({
|
28 |
+
# # "inputs": "Can you please let us know more details about your ",
|
29 |
+
# # })
|
30 |
+
|
31 |
+
# def generate_response(prompt):
|
32 |
+
# # Generate response from the API
|
33 |
+
# response = query({"inputs":prompt})
|
34 |
+
# return response[0]['generated_text']
|
35 |
+
|
36 |
+
|
37 |
+
# def get_embedding(text):
|
38 |
+
# return model1.encode(text, convert_to_tensor=True)
|
39 |
+
|
40 |
+
# def calculate_similarity(text1, text2):
|
41 |
+
# embedding1 = get_embedding(text1)
|
42 |
+
# embedding2 = get_embedding(text2)
|
43 |
+
# similarity = util.pytorch_cos_sim(embedding1, embedding2)
|
44 |
+
# return similarity.item()
|
45 |
+
|
46 |
+
# def get_grade(similarity_score):
|
47 |
+
# if similarity_score >= 0.9:
|
48 |
+
# return 5
|
49 |
+
# elif similarity_score >= 0.8:
|
50 |
+
# return 4
|
51 |
+
# elif similarity_score >= 0.7:
|
52 |
+
# return 3
|
53 |
+
# elif similarity_score >= 0.6:
|
54 |
+
# return 2
|
55 |
+
# else:
|
56 |
+
# return 1
|
57 |
+
|
58 |
+
|
59 |
+
# def evaluate_answer(image,languages):
|
60 |
+
# student_answer = extract_text_from_image(image,languages)
|
61 |
+
# model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
|
62 |
+
# similarity_score = calculate_similarity(student_answer, model_answer)
|
63 |
+
# grade = get_grade(similarity_score)
|
64 |
+
# feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
|
65 |
+
# return grade, similarity_score * 100, feedback
|
66 |
+
|
67 |
+
# def generate_response(prompt):
|
68 |
+
# # Generate response from the new model using the pipeline
|
69 |
+
# response = pipe(prompt, max_length=150, temperature=0.7)
|
70 |
+
# return response[0]['generated_text']
|
71 |
+
|
72 |
+
# def gradio_interface(image, languages: List[str]):
|
73 |
+
# grade, similarity_score, feedback = evaluate_answer(image,languages)
|
74 |
+
# response = generate_response(prompt)
|
75 |
+
# return grade, similarity_score, response
|
76 |
+
|
77 |
+
# # # Define Gradio interface
|
78 |
+
# # interface = gr.Interface(
|
79 |
+
# # fn=gradio_interface,
|
80 |
+
# # inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your prompt here")],
|
81 |
+
# # outputs=[gr.Label(), gr.Label(), gr.Textbox(), gr.Textbox()],
|
82 |
+
# # live=True
|
83 |
+
# # )
|
84 |
+
# language_choices = pytesseract.get_languages()
|
85 |
+
# interface = gr.Interface(
|
86 |
+
# fn=gradio_interface,
|
87 |
+
# inputs=[
|
88 |
+
# gr.Image(type="filepath", label="Input"),
|
89 |
+
# gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language')
|
90 |
+
# ],
|
91 |
+
# outputs=[gr.Text(label="Grade"), gr.Number(label="Similarity Score (%)"), gr.Text(label="Feedback")],
|
92 |
+
# title="Automated Grading System",
|
93 |
+
# description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
|
94 |
+
# live=True
|
95 |
+
# )
|
96 |
+
|
97 |
+
|
98 |
+
# if __name__ == "__main__":
|
99 |
+
# interface.launch()
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
import gradio as gr
|
108 |
+
from transformers import pipeline
|
|
|
|
|
|
|
|
|
109 |
import pytesseract
|
110 |
from sentence_transformers import SentenceTransformer, util
|
111 |
+
from PIL import Image
|
112 |
from typing import List
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
import requests
|
114 |
|
115 |
+
# Initialize sentence transformer model
|
116 |
+
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
|
117 |
+
|
118 |
+
# Hugging Face API details
|
119 |
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
|
120 |
+
headers = {"Authorization": "Bearer hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}
|
121 |
|
122 |
+
# Function to interact with Hugging Face API for GPT-2
|
123 |
def query(payload):
|
124 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
125 |
+
return response.json()
|
|
|
|
|
|
|
|
|
126 |
|
127 |
+
# Function to generate text response from GPT-2 model using Hugging Face API
|
128 |
def generate_response(prompt):
|
129 |
+
response = query({"inputs": prompt})
|
|
|
130 |
return response[0]['generated_text']
|
131 |
|
132 |
+
# Extract text from an image using Tesseract
|
133 |
+
def extract_text_from_image(filepath: str, languages: List[str]):
|
134 |
+
image = Image.open(filepath)
|
135 |
+
lang_str = '+'.join(languages) # Join languages for Tesseract
|
136 |
+
return pytesseract.image_to_string(image=image, lang=lang_str)
|
137 |
|
138 |
+
# Function to get embeddings for text using SentenceTransformer
|
139 |
def get_embedding(text):
|
140 |
return model1.encode(text, convert_to_tensor=True)
|
141 |
|
142 |
+
# Calculate similarity between two texts using cosine similarity
|
143 |
def calculate_similarity(text1, text2):
|
144 |
embedding1 = get_embedding(text1)
|
145 |
embedding2 = get_embedding(text2)
|
146 |
similarity = util.pytorch_cos_sim(embedding1, embedding2)
|
147 |
return similarity.item()
|
148 |
|
149 |
+
# Assign grades based on similarity score
|
150 |
def get_grade(similarity_score):
|
151 |
if similarity_score >= 0.9:
|
152 |
return 5
|
|
|
159 |
else:
|
160 |
return 1
|
161 |
|
162 |
+
# Function to evaluate student's answer by comparing it to a model answer
|
163 |
+
def evaluate_answer(image, languages):
|
164 |
+
student_answer = extract_text_from_image(image, languages)
|
165 |
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
|
166 |
similarity_score = calculate_similarity(student_answer, model_answer)
|
167 |
grade = get_grade(similarity_score)
|
168 |
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
|
169 |
return grade, similarity_score * 100, feedback
|
170 |
|
171 |
+
# Main interface function for Gradio
|
172 |
+
def gradio_interface(image, languages: List[str], prompt):
|
173 |
+
grade, similarity_score, feedback = evaluate_answer(image, languages)
|
|
|
|
|
|
|
|
|
174 |
response = generate_response(prompt)
|
175 |
+
return grade, similarity_score, feedback, response
|
176 |
|
177 |
+
# Get available Tesseract languages
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
language_choices = pytesseract.get_languages()
|
179 |
+
|
180 |
+
# Define Gradio interface
|
181 |
interface = gr.Interface(
|
182 |
fn=gradio_interface,
|
183 |
inputs=[
|
184 |
gr.Image(type="filepath", label="Input"),
|
185 |
+
gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'),
|
186 |
+
gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
|
187 |
+
],
|
188 |
+
outputs=[
|
189 |
+
gr.Text(label="Grade"),
|
190 |
+
gr.Number(label="Similarity Score (%)"),
|
191 |
+
gr.Text(label="Feedback"),
|
192 |
+
gr.Text(label="Generated Response")
|
193 |
+
],
|
194 |
title="Automated Grading System",
|
195 |
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
|
196 |
live=True
|
197 |
)
|
|
|
198 |
|
199 |
if __name__ == "__main__":
|
200 |
interface.launch()
|
201 |
+
|