File size: 6,971 Bytes
2aa09ae f7dfa37 2aa09ae d9f22c4 f7dfa37 2aa09ae 3583331 4e5c44e 2aa09ae 4e5c44e 2aa09ae 4e5c44e 2aa09ae 4e5c44e 2aa09ae 4e5c44e 2aa09ae 4e5c44e 2aa09ae 4e5c44e 2aa09ae f7dfa37 2aa09ae f7dfa37 2aa09ae f7dfa37 2aa09ae f7dfa37 2aa09ae f7dfa37 860f072 f7dfa37 2aa09ae f7dfa37 2aa09ae 860f072 2aa09ae 54d872b 2aa09ae f7dfa37 54d872b 2aa09ae 860f072 7e73101 f7dfa37 2aa09ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
# import gradio as gr
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# import torch
# import numpy as np
# import cv2
# from PIL import Image
# import pytesseract
# from sentence_transformers import SentenceTransformer, util
# import io
# from typing import List
# def extract_text_from_image(filepath: str, languages: List[str]):
# image = Image.open(filepath)
# return pytesseract.image_to_string(image=image, lang=', '.join(languages))
# # tess.pytesseract.tesseract_cmd = r"tesseract"
# import requests
# API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
# headers = {"Authorization": "hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}
# def query(payload):
# response = requests.post(API_URL, headers=headers, json=payload)
# return response.json()
# # output = query({
# # "inputs": "Can you please let us know more details about your ",
# # })
# def generate_response(prompt):
# # Generate response from the API
# response = query({"inputs":prompt})
# return response[0]['generated_text']
# def get_embedding(text):
# return model1.encode(text, convert_to_tensor=True)
# def calculate_similarity(text1, text2):
# embedding1 = get_embedding(text1)
# embedding2 = get_embedding(text2)
# similarity = util.pytorch_cos_sim(embedding1, embedding2)
# return similarity.item()
# def get_grade(similarity_score):
# if similarity_score >= 0.9:
# return 5
# elif similarity_score >= 0.8:
# return 4
# elif similarity_score >= 0.7:
# return 3
# elif similarity_score >= 0.6:
# return 2
# else:
# return 1
# def evaluate_answer(image,languages):
# student_answer = extract_text_from_image(image,languages)
# model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
# similarity_score = calculate_similarity(student_answer, model_answer)
# grade = get_grade(similarity_score)
# feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
# return grade, similarity_score * 100, feedback
# def generate_response(prompt):
# # Generate response from the new model using the pipeline
# response = pipe(prompt, max_length=150, temperature=0.7)
# return response[0]['generated_text']
# def gradio_interface(image, languages: List[str]):
# grade, similarity_score, feedback = evaluate_answer(image,languages)
# response = generate_response(prompt)
# return grade, similarity_score, response
# # # Define Gradio interface
# # interface = gr.Interface(
# # fn=gradio_interface,
# # inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your prompt here")],
# # outputs=[gr.Label(), gr.Label(), gr.Textbox(), gr.Textbox()],
# # live=True
# # )
# language_choices = pytesseract.get_languages()
# interface = gr.Interface(
# fn=gradio_interface,
# inputs=[
# gr.Image(type="filepath", label="Input"),
# gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language')
# ],
# outputs=[gr.Text(label="Grade"), gr.Number(label="Similarity Score (%)"), gr.Text(label="Feedback")],
# title="Automated Grading System",
# description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
# live=True
# )
# if __name__ == "__main__":
# interface.launch()
import gradio as gr
from transformers import pipeline
import pytesseract
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from typing import List
import requests
# Initialize sentence transformer model
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Hugging Face API details
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
headers = {"Authorization": "Bearer hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}
# Function to interact with Hugging Face API for GPT-2
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# Function to generate text response from GPT-2 model using Hugging Face API
def generate_response(prompt):
response = query({"inputs": prompt})
return response[0]['generated_text']
# Extract text from an image using Tesseract
def extract_text_from_image(filepath: str, languages: List[str]):
image = Image.open(filepath)
lang_str = '+'.join(languages) # Join languages for Tesseract
return pytesseract.image_to_string(image=image, lang=lang_str)
# Function to get embeddings for text using SentenceTransformer
def get_embedding(text):
return model1.encode(text, convert_to_tensor=True)
# Calculate similarity between two texts using cosine similarity
def calculate_similarity(text1, text2):
embedding1 = get_embedding(text1)
embedding2 = get_embedding(text2)
similarity = util.pytorch_cos_sim(embedding1, embedding2)
return similarity.item()
# Assign grades based on similarity score
def get_grade(similarity_score):
if similarity_score >= 0.9:
return 5
elif similarity_score >= 0.8:
return 4
elif similarity_score >= 0.7:
return 3
elif similarity_score >= 0.6:
return 2
else:
return 1
# Function to evaluate student's answer by comparing it to a model answer
def evaluate_answer(image, languages):
student_answer = extract_text_from_image(image, languages)
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
similarity_score = calculate_similarity(student_answer, model_answer)
grade = get_grade(similarity_score)
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
return grade, similarity_score * 100, feedback
# Main interface function for Gradio
def gradio_interface(image, languages: List[str], prompt):
grade, similarity_score, feedback = evaluate_answer(image, languages)
response = generate_response(prompt)
return grade, similarity_score, feedback, response
# Get available Tesseract languages
language_choices = pytesseract.get_languages()
# Define Gradio interface
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Image(type="filepath", label="Input"),
gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'),
gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
],
outputs=[
gr.Text(label="Grade"),
gr.Number(label="Similarity Score (%)"),
gr.Text(label="Feedback"),
gr.Text(label="Generated Response")
],
title="Automated Grading System",
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
live=True
)
if __name__ == "__main__":
interface.launch()
|