File size: 6,971 Bytes
2aa09ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7dfa37
2aa09ae
d9f22c4
f7dfa37
2aa09ae
3583331
4e5c44e
 
2aa09ae
 
 
 
4e5c44e
2aa09ae
4e5c44e
2aa09ae
4e5c44e
2aa09ae
 
4e5c44e
2aa09ae
4e5c44e
2aa09ae
4e5c44e
 
2aa09ae
 
 
 
 
f7dfa37
2aa09ae
f7dfa37
 
 
2aa09ae
f7dfa37
 
 
 
 
 
2aa09ae
f7dfa37
 
 
 
 
 
 
 
 
 
 
 
2aa09ae
 
 
f7dfa37
 
 
860f072
f7dfa37
 
2aa09ae
 
 
f7dfa37
2aa09ae
860f072
2aa09ae
54d872b
2aa09ae
 
f7dfa37
 
54d872b
 
2aa09ae
 
 
 
 
 
 
 
 
860f072
7e73101
f7dfa37
 
 
 
 
2aa09ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# import gradio as gr
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# import torch
# import numpy as np
# import cv2
# from PIL import Image
# import pytesseract
# from sentence_transformers import SentenceTransformer, util
# import io
# from typing import List

# def extract_text_from_image(filepath: str, languages: List[str]):
#     image = Image.open(filepath)
#     return pytesseract.image_to_string(image=image, lang=', '.join(languages))

# # tess.pytesseract.tesseract_cmd = r"tesseract"

# import requests

# API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
# headers = {"Authorization": "hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}

# def query(payload):
# 	response = requests.post(API_URL, headers=headers, json=payload)
# 	return response.json()
	
# # output = query({
# # 	"inputs": "Can you please let us know more details about your ",
# # })

# def generate_response(prompt):
#     # Generate response from the API
#     response = query({"inputs":prompt})
#     return response[0]['generated_text']


# def get_embedding(text):
#     return model1.encode(text, convert_to_tensor=True)

# def calculate_similarity(text1, text2):
#     embedding1 = get_embedding(text1)
#     embedding2 = get_embedding(text2)
#     similarity = util.pytorch_cos_sim(embedding1, embedding2)
#     return similarity.item()

# def get_grade(similarity_score):
#     if similarity_score >= 0.9:
#         return 5
#     elif similarity_score >= 0.8:
#         return 4
#     elif similarity_score >= 0.7:
#         return 3
#     elif similarity_score >= 0.6:
#         return 2
#     else:
#         return 1


# def evaluate_answer(image,languages):
#     student_answer = extract_text_from_image(image,languages)
#     model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
#     similarity_score = calculate_similarity(student_answer, model_answer)
#     grade = get_grade(similarity_score)
#     feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
#     return grade, similarity_score * 100, feedback

# def generate_response(prompt):
#     # Generate response from the new model using the pipeline
#     response = pipe(prompt, max_length=150, temperature=0.7)
#     return response[0]['generated_text']

# def gradio_interface(image, languages: List[str]):
#     grade, similarity_score, feedback = evaluate_answer(image,languages)
#     response = generate_response(prompt)
#     return grade, similarity_score, response

# # # Define Gradio interface
# # interface = gr.Interface(
# #     fn=gradio_interface,
# #     inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your prompt here")],
# #     outputs=[gr.Label(), gr.Label(), gr.Textbox(), gr.Textbox()],
# #     live=True
# # )
# language_choices = pytesseract.get_languages()
# interface = gr.Interface(
#     fn=gradio_interface,
#     inputs=[
#         gr.Image(type="filepath", label="Input"), 
#         gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language')
#         ],
#     outputs=[gr.Text(label="Grade"), gr.Number(label="Similarity Score (%)"), gr.Text(label="Feedback")],
#     title="Automated Grading System",
#     description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
#     live=True
# )
    

# if __name__ == "__main__":
#     interface.launch()







import gradio as gr
from transformers import pipeline
import pytesseract
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from typing import List
import requests

# Initialize sentence transformer model
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

# Hugging Face API details
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
headers = {"Authorization": "Bearer hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}

# Function to interact with Hugging Face API for GPT-2
def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

# Function to generate text response from GPT-2 model using Hugging Face API
def generate_response(prompt):
    response = query({"inputs": prompt})
    return response[0]['generated_text']

# Extract text from an image using Tesseract
def extract_text_from_image(filepath: str, languages: List[str]):
    image = Image.open(filepath)
    lang_str = '+'.join(languages)  # Join languages for Tesseract
    return pytesseract.image_to_string(image=image, lang=lang_str)

# Function to get embeddings for text using SentenceTransformer
def get_embedding(text):
    return model1.encode(text, convert_to_tensor=True)

# Calculate similarity between two texts using cosine similarity
def calculate_similarity(text1, text2):
    embedding1 = get_embedding(text1)
    embedding2 = get_embedding(text2)
    similarity = util.pytorch_cos_sim(embedding1, embedding2)
    return similarity.item()

# Assign grades based on similarity score
def get_grade(similarity_score):
    if similarity_score >= 0.9:
        return 5
    elif similarity_score >= 0.8:
        return 4
    elif similarity_score >= 0.7:
        return 3
    elif similarity_score >= 0.6:
        return 2
    else:
        return 1

# Function to evaluate student's answer by comparing it to a model answer
def evaluate_answer(image, languages):
    student_answer = extract_text_from_image(image, languages)
    model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
    similarity_score = calculate_similarity(student_answer, model_answer)
    grade = get_grade(similarity_score)
    feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
    return grade, similarity_score * 100, feedback

# Main interface function for Gradio
def gradio_interface(image, languages: List[str], prompt):
    grade, similarity_score, feedback = evaluate_answer(image, languages)
    response = generate_response(prompt)
    return grade, similarity_score, feedback, response

# Get available Tesseract languages
language_choices = pytesseract.get_languages()

# Define Gradio interface
interface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Image(type="filepath", label="Input"), 
        gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'),
        gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
    ],
    outputs=[
        gr.Text(label="Grade"), 
        gr.Number(label="Similarity Score (%)"), 
        gr.Text(label="Feedback"), 
        gr.Text(label="Generated Response")
    ],
    title="Automated Grading System",
    description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
    live=True
)

if __name__ == "__main__":
    interface.launch()