File size: 4,215 Bytes
2aa09ae
f7dfa37
2aa09ae
d9f22c4
f7dfa37
2aa09ae
3583331
4e5c44e
 
2aa09ae
 
 
 
4e5c44e
2aa09ae
4e5c44e
2aa09ae
4e5c44e
2aa09ae
 
4e5c44e
c800344
 
 
 
 
 
 
 
 
 
 
 
 
2aa09ae
42c3128
 
 
4e5c44e
2aa09ae
 
 
 
 
f7dfa37
2aa09ae
f7dfa37
 
 
2aa09ae
f7dfa37
 
 
 
 
 
2aa09ae
f7dfa37
 
 
 
 
 
 
 
 
 
 
 
2aa09ae
 
 
f7dfa37
 
 
860f072
8defca1
 
f7dfa37
2aa09ae
8defca1
 
f7dfa37
2aa09ae
860f072
2aa09ae
54d872b
2aa09ae
 
f7dfa37
 
54d872b
 
2aa09ae
 
 
 
 
 
 
 
 
860f072
7e73101
f7dfa37
 
 
 
 
2aa09ae
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

import gradio as gr
from transformers import pipeline
import pytesseract
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from typing import List
import requests

# Initialize sentence transformer model
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

# Hugging Face API details
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
headers = {"Authorization": "Bearer hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}

# Function to interact with Hugging Face API for GPT-2
def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

# Function to generate text response from GPT-2 model using Hugging Face API
def generate_response(prompt):
    response = query({"inputs": prompt})
    
    # Check if the response contains the expected format
    if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
        return response[0]['generated_text']
    else:
        # Log the response if something unexpected is returned
        print("Unexpected response format:", response)
        return "Sorry, I couldn't generate a response."
    

# Function to generate text response from GPT-2 model using Hugging Face API
# def generate_response(prompt):
#     response = query({"inputs": prompt})
#     return response[0]['generated_text']

# Extract text from an image using Tesseract
def extract_text_from_image(filepath: str, languages: List[str]):
    image = Image.open(filepath)
    lang_str = '+'.join(languages)  # Join languages for Tesseract
    return pytesseract.image_to_string(image=image, lang=lang_str)

# Function to get embeddings for text using SentenceTransformer
def get_embedding(text):
    return model1.encode(text, convert_to_tensor=True)

# Calculate similarity between two texts using cosine similarity
def calculate_similarity(text1, text2):
    embedding1 = get_embedding(text1)
    embedding2 = get_embedding(text2)
    similarity = util.pytorch_cos_sim(embedding1, embedding2)
    return similarity.item()

# Assign grades based on similarity score
def get_grade(similarity_score):
    if similarity_score >= 0.9:
        return 5
    elif similarity_score >= 0.8:
        return 4
    elif similarity_score >= 0.7:
        return 3
    elif similarity_score >= 0.6:
        return 2
    else:
        return 1

# Function to evaluate student's answer by comparing it to a model answer
def evaluate_answer(image, languages):
    student_answer = extract_text_from_image(image, languages)
    model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
    similarity_score = calculate_similarity(student_answer, model_answer)
    grade = get_grade(similarity_score)
    feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
    prompt=f"the student got grades: {grade} when Student's answer is: {student_answer} and Teacher's answer is: {model_answer}. justify the grades given to student"
    return grade, similarity_score * 100, feedback, prompt

# Main interface function for Gradio
def gradio_interface(image, languages: List[str], prompt=""):
    grade, similarity_score, feedback,prompt = evaluate_answer(image, languages)
    response = generate_response(prompt)
    return grade, similarity_score, feedback, response

# Get available Tesseract languages
language_choices = pytesseract.get_languages()

# Define Gradio interface
interface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Image(type="filepath", label="Input"), 
        gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'),
        gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
    ],
    outputs=[
        gr.Text(label="Grade"), 
        gr.Number(label="Similarity Score (%)"), 
        gr.Text(label="Feedback"), 
        gr.Text(label="Generated Response")
    ],
    title="Automated Grading System",
    description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
    live=True
)

if __name__ == "__main__":
    interface.launch()