File size: 4,215 Bytes
2aa09ae f7dfa37 2aa09ae d9f22c4 f7dfa37 2aa09ae 3583331 4e5c44e 2aa09ae 4e5c44e 2aa09ae 4e5c44e 2aa09ae 4e5c44e 2aa09ae 4e5c44e c800344 2aa09ae 42c3128 4e5c44e 2aa09ae f7dfa37 2aa09ae f7dfa37 2aa09ae f7dfa37 2aa09ae f7dfa37 2aa09ae f7dfa37 860f072 8defca1 f7dfa37 2aa09ae 8defca1 f7dfa37 2aa09ae 860f072 2aa09ae 54d872b 2aa09ae f7dfa37 54d872b 2aa09ae 860f072 7e73101 f7dfa37 2aa09ae |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
import gradio as gr
from transformers import pipeline
import pytesseract
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from typing import List
import requests
# Initialize sentence transformer model
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Hugging Face API details
API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
headers = {"Authorization": "Bearer hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}
# Function to interact with Hugging Face API for GPT-2
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
# Function to generate text response from GPT-2 model using Hugging Face API
def generate_response(prompt):
response = query({"inputs": prompt})
# Check if the response contains the expected format
if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
return response[0]['generated_text']
else:
# Log the response if something unexpected is returned
print("Unexpected response format:", response)
return "Sorry, I couldn't generate a response."
# Function to generate text response from GPT-2 model using Hugging Face API
# def generate_response(prompt):
# response = query({"inputs": prompt})
# return response[0]['generated_text']
# Extract text from an image using Tesseract
def extract_text_from_image(filepath: str, languages: List[str]):
image = Image.open(filepath)
lang_str = '+'.join(languages) # Join languages for Tesseract
return pytesseract.image_to_string(image=image, lang=lang_str)
# Function to get embeddings for text using SentenceTransformer
def get_embedding(text):
return model1.encode(text, convert_to_tensor=True)
# Calculate similarity between two texts using cosine similarity
def calculate_similarity(text1, text2):
embedding1 = get_embedding(text1)
embedding2 = get_embedding(text2)
similarity = util.pytorch_cos_sim(embedding1, embedding2)
return similarity.item()
# Assign grades based on similarity score
def get_grade(similarity_score):
if similarity_score >= 0.9:
return 5
elif similarity_score >= 0.8:
return 4
elif similarity_score >= 0.7:
return 3
elif similarity_score >= 0.6:
return 2
else:
return 1
# Function to evaluate student's answer by comparing it to a model answer
def evaluate_answer(image, languages):
student_answer = extract_text_from_image(image, languages)
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
similarity_score = calculate_similarity(student_answer, model_answer)
grade = get_grade(similarity_score)
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
prompt=f"the student got grades: {grade} when Student's answer is: {student_answer} and Teacher's answer is: {model_answer}. justify the grades given to student"
return grade, similarity_score * 100, feedback, prompt
# Main interface function for Gradio
def gradio_interface(image, languages: List[str], prompt=""):
grade, similarity_score, feedback,prompt = evaluate_answer(image, languages)
response = generate_response(prompt)
return grade, similarity_score, feedback, response
# Get available Tesseract languages
language_choices = pytesseract.get_languages()
# Define Gradio interface
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Image(type="filepath", label="Input"),
gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'),
gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
],
outputs=[
gr.Text(label="Grade"),
gr.Number(label="Similarity Score (%)"),
gr.Text(label="Feedback"),
gr.Text(label="Generated Response")
],
title="Automated Grading System",
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
live=True
)
if __name__ == "__main__":
interface.launch()
|