Update app.py
Browse files
app.py
CHANGED
@@ -1,108 +1,3 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
3 |
-
# import torch
|
4 |
-
# import numpy as np
|
5 |
-
# import cv2
|
6 |
-
# from PIL import Image
|
7 |
-
# import pytesseract
|
8 |
-
# from sentence_transformers import SentenceTransformer, util
|
9 |
-
# import io
|
10 |
-
# from typing import List
|
11 |
-
|
12 |
-
# def extract_text_from_image(filepath: str, languages: List[str]):
|
13 |
-
# image = Image.open(filepath)
|
14 |
-
# return pytesseract.image_to_string(image=image, lang=', '.join(languages))
|
15 |
-
|
16 |
-
# # tess.pytesseract.tesseract_cmd = r"tesseract"
|
17 |
-
|
18 |
-
# import requests
|
19 |
-
|
20 |
-
# API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
|
21 |
-
# headers = {"Authorization": "hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}
|
22 |
-
|
23 |
-
# def query(payload):
|
24 |
-
# response = requests.post(API_URL, headers=headers, json=payload)
|
25 |
-
# return response.json()
|
26 |
-
|
27 |
-
# # output = query({
|
28 |
-
# # "inputs": "Can you please let us know more details about your ",
|
29 |
-
# # })
|
30 |
-
|
31 |
-
# def generate_response(prompt):
|
32 |
-
# # Generate response from the API
|
33 |
-
# response = query({"inputs":prompt})
|
34 |
-
# return response[0]['generated_text']
|
35 |
-
|
36 |
-
|
37 |
-
# def get_embedding(text):
|
38 |
-
# return model1.encode(text, convert_to_tensor=True)
|
39 |
-
|
40 |
-
# def calculate_similarity(text1, text2):
|
41 |
-
# embedding1 = get_embedding(text1)
|
42 |
-
# embedding2 = get_embedding(text2)
|
43 |
-
# similarity = util.pytorch_cos_sim(embedding1, embedding2)
|
44 |
-
# return similarity.item()
|
45 |
-
|
46 |
-
# def get_grade(similarity_score):
|
47 |
-
# if similarity_score >= 0.9:
|
48 |
-
# return 5
|
49 |
-
# elif similarity_score >= 0.8:
|
50 |
-
# return 4
|
51 |
-
# elif similarity_score >= 0.7:
|
52 |
-
# return 3
|
53 |
-
# elif similarity_score >= 0.6:
|
54 |
-
# return 2
|
55 |
-
# else:
|
56 |
-
# return 1
|
57 |
-
|
58 |
-
|
59 |
-
# def evaluate_answer(image,languages):
|
60 |
-
# student_answer = extract_text_from_image(image,languages)
|
61 |
-
# model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
|
62 |
-
# similarity_score = calculate_similarity(student_answer, model_answer)
|
63 |
-
# grade = get_grade(similarity_score)
|
64 |
-
# feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
|
65 |
-
# return grade, similarity_score * 100, feedback
|
66 |
-
|
67 |
-
# def generate_response(prompt):
|
68 |
-
# # Generate response from the new model using the pipeline
|
69 |
-
# response = pipe(prompt, max_length=150, temperature=0.7)
|
70 |
-
# return response[0]['generated_text']
|
71 |
-
|
72 |
-
# def gradio_interface(image, languages: List[str]):
|
73 |
-
# grade, similarity_score, feedback = evaluate_answer(image,languages)
|
74 |
-
# response = generate_response(prompt)
|
75 |
-
# return grade, similarity_score, response
|
76 |
-
|
77 |
-
# # # Define Gradio interface
|
78 |
-
# # interface = gr.Interface(
|
79 |
-
# # fn=gradio_interface,
|
80 |
-
# # inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your prompt here")],
|
81 |
-
# # outputs=[gr.Label(), gr.Label(), gr.Textbox(), gr.Textbox()],
|
82 |
-
# # live=True
|
83 |
-
# # )
|
84 |
-
# language_choices = pytesseract.get_languages()
|
85 |
-
# interface = gr.Interface(
|
86 |
-
# fn=gradio_interface,
|
87 |
-
# inputs=[
|
88 |
-
# gr.Image(type="filepath", label="Input"),
|
89 |
-
# gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language')
|
90 |
-
# ],
|
91 |
-
# outputs=[gr.Text(label="Grade"), gr.Number(label="Similarity Score (%)"), gr.Text(label="Feedback")],
|
92 |
-
# title="Automated Grading System",
|
93 |
-
# description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
|
94 |
-
# live=True
|
95 |
-
# )
|
96 |
-
|
97 |
-
|
98 |
-
# if __name__ == "__main__":
|
99 |
-
# interface.launch()
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
|
107 |
import gradio as gr
|
108 |
from transformers import pipeline
|
@@ -124,6 +19,19 @@ def query(payload):
|
|
124 |
response = requests.post(API_URL, headers=headers, json=payload)
|
125 |
return response.json()
|
126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
# Function to generate text response from GPT-2 model using Hugging Face API
|
128 |
def generate_response(prompt):
|
129 |
response = query({"inputs": prompt})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
|
|
19 |
response = requests.post(API_URL, headers=headers, json=payload)
|
20 |
return response.json()
|
21 |
|
22 |
+
# Function to generate text response from GPT-2 model using Hugging Face API
|
23 |
+
def generate_response(prompt):
|
24 |
+
response = query({"inputs": prompt})
|
25 |
+
|
26 |
+
# Check if the response contains the expected format
|
27 |
+
if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
|
28 |
+
return response[0]['generated_text']
|
29 |
+
else:
|
30 |
+
# Log the response if something unexpected is returned
|
31 |
+
print("Unexpected response format:", response)
|
32 |
+
return "Sorry, I couldn't generate a response."
|
33 |
+
|
34 |
+
|
35 |
# Function to generate text response from GPT-2 model using Hugging Face API
|
36 |
def generate_response(prompt):
|
37 |
response = query({"inputs": prompt})
|