Garvitj commited on
Commit
c800344
·
verified ·
1 Parent(s): 2aa09ae

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -105
app.py CHANGED
@@ -1,108 +1,3 @@
1
- # import gradio as gr
2
- # from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
3
- # import torch
4
- # import numpy as np
5
- # import cv2
6
- # from PIL import Image
7
- # import pytesseract
8
- # from sentence_transformers import SentenceTransformer, util
9
- # import io
10
- # from typing import List
11
-
12
- # def extract_text_from_image(filepath: str, languages: List[str]):
13
- # image = Image.open(filepath)
14
- # return pytesseract.image_to_string(image=image, lang=', '.join(languages))
15
-
16
- # # tess.pytesseract.tesseract_cmd = r"tesseract"
17
-
18
- # import requests
19
-
20
- # API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
21
- # headers = {"Authorization": "hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx"}
22
-
23
- # def query(payload):
24
- # response = requests.post(API_URL, headers=headers, json=payload)
25
- # return response.json()
26
-
27
- # # output = query({
28
- # # "inputs": "Can you please let us know more details about your ",
29
- # # })
30
-
31
- # def generate_response(prompt):
32
- # # Generate response from the API
33
- # response = query({"inputs":prompt})
34
- # return response[0]['generated_text']
35
-
36
-
37
- # def get_embedding(text):
38
- # return model1.encode(text, convert_to_tensor=True)
39
-
40
- # def calculate_similarity(text1, text2):
41
- # embedding1 = get_embedding(text1)
42
- # embedding2 = get_embedding(text2)
43
- # similarity = util.pytorch_cos_sim(embedding1, embedding2)
44
- # return similarity.item()
45
-
46
- # def get_grade(similarity_score):
47
- # if similarity_score >= 0.9:
48
- # return 5
49
- # elif similarity_score >= 0.8:
50
- # return 4
51
- # elif similarity_score >= 0.7:
52
- # return 3
53
- # elif similarity_score >= 0.6:
54
- # return 2
55
- # else:
56
- # return 1
57
-
58
-
59
- # def evaluate_answer(image,languages):
60
- # student_answer = extract_text_from_image(image,languages)
61
- # model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
62
- # similarity_score = calculate_similarity(student_answer, model_answer)
63
- # grade = get_grade(similarity_score)
64
- # feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
65
- # return grade, similarity_score * 100, feedback
66
-
67
- # def generate_response(prompt):
68
- # # Generate response from the new model using the pipeline
69
- # response = pipe(prompt, max_length=150, temperature=0.7)
70
- # return response[0]['generated_text']
71
-
72
- # def gradio_interface(image, languages: List[str]):
73
- # grade, similarity_score, feedback = evaluate_answer(image,languages)
74
- # response = generate_response(prompt)
75
- # return grade, similarity_score, response
76
-
77
- # # # Define Gradio interface
78
- # # interface = gr.Interface(
79
- # # fn=gradio_interface,
80
- # # inputs=[gr.Image(type="pil"), gr.Textbox(lines=2, placeholder="Enter your prompt here")],
81
- # # outputs=[gr.Label(), gr.Label(), gr.Textbox(), gr.Textbox()],
82
- # # live=True
83
- # # )
84
- # language_choices = pytesseract.get_languages()
85
- # interface = gr.Interface(
86
- # fn=gradio_interface,
87
- # inputs=[
88
- # gr.Image(type="filepath", label="Input"),
89
- # gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language')
90
- # ],
91
- # outputs=[gr.Text(label="Grade"), gr.Number(label="Similarity Score (%)"), gr.Text(label="Feedback")],
92
- # title="Automated Grading System",
93
- # description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
94
- # live=True
95
- # )
96
-
97
-
98
- # if __name__ == "__main__":
99
- # interface.launch()
100
-
101
-
102
-
103
-
104
-
105
-
106
 
107
  import gradio as gr
108
  from transformers import pipeline
@@ -124,6 +19,19 @@ def query(payload):
124
  response = requests.post(API_URL, headers=headers, json=payload)
125
  return response.json()
126
 
 
 
 
 
 
 
 
 
 
 
 
 
 
127
  # Function to generate text response from GPT-2 model using Hugging Face API
128
  def generate_response(prompt):
129
  response = query({"inputs": prompt})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
  import gradio as gr
3
  from transformers import pipeline
 
19
  response = requests.post(API_URL, headers=headers, json=payload)
20
  return response.json()
21
 
22
+ # Function to generate text response from GPT-2 model using Hugging Face API
23
+ def generate_response(prompt):
24
+ response = query({"inputs": prompt})
25
+
26
+ # Check if the response contains the expected format
27
+ if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
28
+ return response[0]['generated_text']
29
+ else:
30
+ # Log the response if something unexpected is returned
31
+ print("Unexpected response format:", response)
32
+ return "Sorry, I couldn't generate a response."
33
+
34
+
35
  # Function to generate text response from GPT-2 model using Hugging Face API
36
  def generate_response(prompt):
37
  response = query({"inputs": prompt})