File size: 8,677 Bytes
2aa09ae 339ebaf f7dfa37 2aa09ae d9f22c4 f7dfa37 2aa09ae 3583331 4e5c44e 2aa09ae 339ebaf 4e5c44e 339ebaf 4e5c44e 339ebaf c800344 339ebaf 4e5c44e 2aa09ae f7dfa37 2aa09ae f7dfa37 2aa09ae f7dfa37 2aa09ae f7dfa37 2aa09ae f7dfa37 860f072 339ebaf 8defca1 f7dfa37 2aa09ae 339ebaf 2aa09ae 860f072 2aa09ae 54d872b 2aa09ae 3e6ee51 f7dfa37 3e6ee51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
# import gradio as gr
# from transformers import pipeline
# import pytesseract
# from sentence_transformers import SentenceTransformer, util
# from PIL import Image
# from typing import List
# import requests
# # Initialize sentence transformer model
# model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# # Hugging Face API details
# API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
# headers = {"Authorization": f"Bearer {hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx}"}
# # Function to interact with Hugging Face API for GPT-2
# def query(payload):
# response = requests.post(API_URL, headers=headers, json=payload)
# return response.json()
# # Function to generate text response from GPT-2 model using Hugging Face API
# def generate_response(prompt):
# response = query({"inputs": prompt})
# # Check if the response contains the expected format
# if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
# return response[0]['generated_text']
# else:
# # Log the response if something unexpected is returned
# print("Unexpected response format:", response)
# return "Sorry, I couldn't generate a response."
# # Function to generate text response from GPT-2 model using Hugging Face API
# # def generate_response(prompt):
# # response = query({"inputs": prompt})
# # return response[0]['generated_text']
# # Extract text from an image using Tesseract
# def extract_text_from_image(filepath: str, languages: List[str]):
# image = Image.open(filepath)
# lang_str = '+'.join(languages) # Join languages for Tesseract
# return pytesseract.image_to_string(image=image, lang=lang_str)
# # Function to get embeddings for text using SentenceTransformer
# def get_embedding(text):
# return model1.encode(text, convert_to_tensor=True)
# # Calculate similarity between two texts using cosine similarity
# def calculate_similarity(text1, text2):
# embedding1 = get_embedding(text1)
# embedding2 = get_embedding(text2)
# similarity = util.pytorch_cos_sim(embedding1, embedding2)
# return similarity.item()
# # Assign grades based on similarity score
# def get_grade(similarity_score):
# if similarity_score >= 0.9:
# return 5
# elif similarity_score >= 0.8:
# return 4
# elif similarity_score >= 0.7:
# return 3
# elif similarity_score >= 0.6:
# return 2
# else:
# return 1
# # Function to evaluate student's answer by comparing it to a model answer
# def evaluate_answer(image, languages):
# student_answer = extract_text_from_image(image, languages)
# model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
# similarity_score = calculate_similarity(student_answer, model_answer)
# grade = get_grade(similarity_score)
# feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
# prompt=f"the student got grades: {grade} when Student's answer is: {student_answer} and Teacher's answer is: {model_answer}. justify the grades given to student"
# return grade, similarity_score * 100, feedback, prompt
# # Main interface function for Gradio
# def gradio_interface(image, languages: List[str], prompt=""):
# grade, similarity_score, feedback,prompt = evaluate_answer(image, languages)
# response = generate_response(prompt)
# return grade, similarity_score, feedback, response
# # Get available Tesseract languages
# language_choices = pytesseract.get_languages()
# # Define Gradio interface
# interface = gr.Interface(
# fn=gradio_interface,
# inputs=[
# gr.Image(type="filepath", label="Input"),
# gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'),
# gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
# ],
# outputs=[
# gr.Text(label="Grade"),
# gr.Number(label="Similarity Score (%)"),
# gr.Text(label="Feedback"),
# gr.Text(label="Generated Response")
# ],
# title="Automated Grading System",
# description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
# live=True
# )
# if __name__ == "__main__":
# interface.launch()
import os
from groq import Groq
import gradio as gr
from transformers import pipeline
import pytesseract
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from typing import List
import requests
# Initialize sentence transformer model
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
# Initialize Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# System prompt for Groq
system_prompt = {
"role": "system",
"content": "You are a useful assistant. You reply with efficient answers."
}
# Function to interact with Groq for generating response
async def chat_groq(message, history):
messages = [system_prompt]
for msg in history:
messages.append({"role": "user", "content": str(msg[0])})
messages.append({"role": "assistant", "content": str(msg[1])})
messages.append({"role": "user", "content": str(message)})
response_content = ''
stream = client.chat.completions.create(
model="llama3-70b-8192",
messages=messages,
max_tokens=1024,
temperature=1.3,
stream=True
)
for chunk in stream:
content = chunk.choices[0].delta.content
if content:
response_content += chunk.choices[0].delta.content
yield response_content
# Extract text from an image using Tesseract
def extract_text_from_image(filepath: str, languages: List[str]):
image = Image.open(filepath)
lang_str = '+'.join(languages) # Join languages for Tesseract
return pytesseract.image_to_string(image=image, lang=lang_str)
# Function to get embeddings for text using SentenceTransformer
def get_embedding(text):
return model1.encode(text, convert_to_tensor=True)
# Calculate similarity between two texts using cosine similarity
def calculate_similarity(text1, text2):
embedding1 = get_embedding(text1)
embedding2 = get_embedding(text2)
similarity = util.pytorch_cos_sim(embedding1, embedding2)
return similarity.item()
# Assign grades based on similarity score
def get_grade(similarity_score):
if similarity_score >= 0.9:
return 5
elif similarity_score >= 0.8:
return 4
elif similarity_score >= 0.7:
return 3
elif similarity_score >= 0.6:
return 2
else:
return 1
# Function to evaluate student's answer by comparing it to a model answer
def evaluate_answer(image, languages):
student_answer = extract_text_from_image(image, languages)
model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
similarity_score = calculate_similarity(student_answer, model_answer)
grade = get_grade(similarity_score)
feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
return grade, similarity_score * 100, feedback, prompt
# Main interface function for Gradio
async def gradio_interface(image, languages: List[str], prompt="", history=[]):
grade, similarity_score, feedback, prompt = evaluate_answer(image, languages)
response = ""
async for result in chat_groq(prompt, history):
response = result # Get the Groq response
return grade, similarity_score, feedback, response
# Get available Tesseract languages
language_choices = pytesseract.get_languages()
# Define Gradio interface
interface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Image(type="filepath", label="Input"),
gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='Language'),
gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
],
outputs=[
gr.Text(label="Grade"),
gr.Number(label="Similarity Score (%)"),
gr.Text(label="Feedback"),
gr.Text(label="Generated Response")
],
title="Automated Grading System",
description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
live=True
)
if __name__ == "__main__":
interface.queue()
interface.launch()
|