File size: 8,677 Bytes
2aa09ae
339ebaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7dfa37
2aa09ae
d9f22c4
f7dfa37
2aa09ae
3583331
4e5c44e
 
2aa09ae
 
 
339ebaf
 
4e5c44e
339ebaf
 
 
 
 
4e5c44e
339ebaf
 
 
c800344
339ebaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e5c44e
2aa09ae
 
 
 
 
f7dfa37
2aa09ae
f7dfa37
 
 
2aa09ae
f7dfa37
 
 
 
 
 
2aa09ae
f7dfa37
 
 
 
 
 
 
 
 
 
 
 
2aa09ae
 
 
f7dfa37
 
 
860f072
339ebaf
8defca1
f7dfa37
2aa09ae
339ebaf
 
 
 
 
2aa09ae
860f072
2aa09ae
54d872b
2aa09ae
 
3e6ee51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7dfa37
 
3e6ee51
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

# import gradio as gr
# from transformers import pipeline
# import pytesseract
# from sentence_transformers import SentenceTransformer, util
# from PIL import Image
# from typing import List
# import requests

# # Initialize sentence transformer model
# model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

# # Hugging Face API details
# API_URL = "https://api-inference.huggingface.co/models/openai-community/gpt2"
# headers = {"Authorization": f"Bearer {hf_TsCTtXxnvpmhFKABqKmcVLyLEhjQPsITSVx}"}

# # Function to interact with Hugging Face API for GPT-2
# def query(payload):
#     response = requests.post(API_URL, headers=headers, json=payload)
#     return response.json()

# # Function to generate text response from GPT-2 model using Hugging Face API
# def generate_response(prompt):
#     response = query({"inputs": prompt})
    
#     # Check if the response contains the expected format
#     if isinstance(response, list) and len(response) > 0 and 'generated_text' in response[0]:
#         return response[0]['generated_text']
#     else:
#         # Log the response if something unexpected is returned
#         print("Unexpected response format:", response)
#         return "Sorry, I couldn't generate a response."
    

# # Function to generate text response from GPT-2 model using Hugging Face API
# # def generate_response(prompt):
# #     response = query({"inputs": prompt})
# #     return response[0]['generated_text']

# # Extract text from an image using Tesseract
# def extract_text_from_image(filepath: str, languages: List[str]):
#     image = Image.open(filepath)
#     lang_str = '+'.join(languages)  # Join languages for Tesseract
#     return pytesseract.image_to_string(image=image, lang=lang_str)

# # Function to get embeddings for text using SentenceTransformer
# def get_embedding(text):
#     return model1.encode(text, convert_to_tensor=True)

# # Calculate similarity between two texts using cosine similarity
# def calculate_similarity(text1, text2):
#     embedding1 = get_embedding(text1)
#     embedding2 = get_embedding(text2)
#     similarity = util.pytorch_cos_sim(embedding1, embedding2)
#     return similarity.item()

# # Assign grades based on similarity score
# def get_grade(similarity_score):
#     if similarity_score >= 0.9:
#         return 5
#     elif similarity_score >= 0.8:
#         return 4
#     elif similarity_score >= 0.7:
#         return 3
#     elif similarity_score >= 0.6:
#         return 2
#     else:
#         return 1

# # Function to evaluate student's answer by comparing it to a model answer
# def evaluate_answer(image, languages):
#     student_answer = extract_text_from_image(image, languages)
#     model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
#     similarity_score = calculate_similarity(student_answer, model_answer)
#     grade = get_grade(similarity_score)
#     feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
#     prompt=f"the student got grades: {grade} when Student's answer is: {student_answer} and Teacher's answer is: {model_answer}. justify the grades given to student"
#     return grade, similarity_score * 100, feedback, prompt

# # Main interface function for Gradio
# def gradio_interface(image, languages: List[str], prompt=""):
#     grade, similarity_score, feedback,prompt = evaluate_answer(image, languages)
#     response = generate_response(prompt)
#     return grade, similarity_score, feedback, response

# # Get available Tesseract languages
# language_choices = pytesseract.get_languages()

# # Define Gradio interface
# interface = gr.Interface(
#     fn=gradio_interface,
#     inputs=[
#         gr.Image(type="filepath", label="Input"), 
#         gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='language'),
#         gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
#     ],
#     outputs=[
#         gr.Text(label="Grade"), 
#         gr.Number(label="Similarity Score (%)"), 
#         gr.Text(label="Feedback"), 
#         gr.Text(label="Generated Response")
#     ],
#     title="Automated Grading System",
#     description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
#     live=True
# )

# if __name__ == "__main__":
#     interface.launch()





import os
from groq import Groq
import gradio as gr
from transformers import pipeline
import pytesseract
from sentence_transformers import SentenceTransformer, util
from PIL import Image
from typing import List
import requests

# Initialize sentence transformer model
model1 = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')

# Initialize Groq client
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

# System prompt for Groq
system_prompt = {
    "role": "system",
    "content": "You are a useful assistant. You reply with efficient answers."
}

# Function to interact with Groq for generating response
async def chat_groq(message, history):
    messages = [system_prompt]

    for msg in history:
        messages.append({"role": "user", "content": str(msg[0])})
        messages.append({"role": "assistant", "content": str(msg[1])})

    messages.append({"role": "user", "content": str(message)})

    response_content = ''
    
    stream = client.chat.completions.create(
        model="llama3-70b-8192",
        messages=messages,
        max_tokens=1024,
        temperature=1.3,
        stream=True
    )

    for chunk in stream:
        content = chunk.choices[0].delta.content
        if content:
            response_content += chunk.choices[0].delta.content
        yield response_content

# Extract text from an image using Tesseract
def extract_text_from_image(filepath: str, languages: List[str]):
    image = Image.open(filepath)
    lang_str = '+'.join(languages)  # Join languages for Tesseract
    return pytesseract.image_to_string(image=image, lang=lang_str)

# Function to get embeddings for text using SentenceTransformer
def get_embedding(text):
    return model1.encode(text, convert_to_tensor=True)

# Calculate similarity between two texts using cosine similarity
def calculate_similarity(text1, text2):
    embedding1 = get_embedding(text1)
    embedding2 = get_embedding(text2)
    similarity = util.pytorch_cos_sim(embedding1, embedding2)
    return similarity.item()

# Assign grades based on similarity score
def get_grade(similarity_score):
    if similarity_score >= 0.9:
        return 5
    elif similarity_score >= 0.8:
        return 4
    elif similarity_score >= 0.7:
        return 3
    elif similarity_score >= 0.6:
        return 2
    else:
        return 1

# Function to evaluate student's answer by comparing it to a model answer
def evaluate_answer(image, languages):
    student_answer = extract_text_from_image(image, languages)
    model_answer = "The process of photosynthesis helps plants produce glucose using sunlight."
    similarity_score = calculate_similarity(student_answer, model_answer)
    grade = get_grade(similarity_score)
    feedback = f"Student's answer: {student_answer}\nTeacher's answer: {model_answer}"
    prompt = f"The student got grade: {grade} when the student's answer is: {student_answer} and the teacher's answer is: {model_answer}. Justify the grade given to the student."
    return grade, similarity_score * 100, feedback, prompt

# Main interface function for Gradio
async def gradio_interface(image, languages: List[str], prompt="", history=[]):
    grade, similarity_score, feedback, prompt = evaluate_answer(image, languages)
    response = ""
    async for result in chat_groq(prompt, history):
        response = result  # Get the Groq response
    return grade, similarity_score, feedback, response

# Get available Tesseract languages
language_choices = pytesseract.get_languages()

# Define Gradio interface
interface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Image(type="filepath", label="Input"), 
        gr.CheckboxGroup(language_choices, type="value", value=['eng'], label='Language'),
        gr.Textbox(lines=2, placeholder="Enter your prompt here", label="Prompt")
    ],
    outputs=[
        gr.Text(label="Grade"), 
        gr.Number(label="Similarity Score (%)"), 
        gr.Text(label="Feedback"), 
        gr.Text(label="Generated Response")
    ],
    title="Automated Grading System",
    description="Upload an image of your answer sheet to get a grade from 1 to 5, similarity score, and feedback based on the model answer.",
    live=True
)

if __name__ == "__main__":
    interface.queue()
    interface.launch()