Spaces:
Sleeping
Sleeping
File size: 2,010 Bytes
d4c3acc 246f207 ceb95cf c21a752 ceb95cf aca9f11 ceb95cf d5aac08 aca9f11 ceb95cf aca9f11 ceb95cf 6564a3a cfd90f9 e14364d aca9f11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import os
import gradio as gr
from transformers import pipeline, DetrForObjectDetection, DetrConfig, DetrImageProcessor
import numpy as np
import cv2
from PIL import Image
def draw_detections(image, detections):
# Convert PIL image to a numpy array
np_image = np.array(image)
# Convert RGB to BGR for OpenCV
np_image = cv2.cvtColor(np_image, cv2.COLOR_RGB2BGR)
for detection in detections:
# Extract scores, labels, and bounding boxes correctly
score = detection['score']
label = detection['label']
box = detection['box']
x_min = box['xmin']
y_min = box['ymin']
x_max = box['xmax']
y_max = box['ymax']
# Draw rectangles and text on the image
cv2.rectangle(np_image, (x_min, y_min), (x_max, y_max), (0, 255, 0), 2)
cv2.putText(np_image, f'{label} {score:.2f}', (x_min, max(y_min - 10, 0)),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
# Convert BGR to RGB for displaying
final_image = cv2.cvtColor(np_image, cv2.COLOR_BGR2RGB)
# Convert the numpy array to PIL Image
final_pil_image = Image.fromarray(final_image)
return final_pil_image
def get_pipeline_prediction(pil_image):
try:
# Run the object detection pipeline
pipeline_output = od_pipe(pil_image)
# Draw the detection results on the image
processed_image = draw_detections(pil_image, pipeline_output)
# Provide both the image and the JSON detection results
return processed_image, pipeline_output
except Exception as e:
# Log the error
print(f"An error occurred: {str(e)}")
# Return a message and an empty JSON
return pil_image, {"error": str(e)}
demo = gr.Interface(
fn=get_pipeline_prediction,
inputs=gr.Image(label="Input image", type="pil"),
outputs=[
gr.Image(label="Annotated Image"),
gr.JSON(label="Detected Objects")
]
)
demo.launch() |