Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import re | |
import langdetect | |
from stopwordsiso import stopwords, has_lang | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
def detect_language(text): | |
try: | |
return langdetect.detect(text) | |
except: | |
return "en" | |
def get_stopwords_for_language(lang_code): | |
lang_code = lang_code.lower() | |
if has_lang(lang_code): | |
return stopwords(lang_code) # returns a set of stopwords | |
return set() | |
def extract_top_keywords(text, top_n=5): | |
# Basic cleanup | |
cleaned_text = re.sub(r"[^\w\s]", " ", text.lower()) | |
lang_code = detect_language(cleaned_text) | |
language_stopwords = get_stopwords_for_language(lang_code) | |
# Convert stopwords set to list because TfidfVectorizer needs list/None/'english' | |
stopwords_list = list(language_stopwords) | |
vectorizer = TfidfVectorizer(stop_words=stopwords_list) | |
try: | |
tfidf_matrix = vectorizer.fit_transform([cleaned_text]) | |
except ValueError as e: | |
# If there's nothing left after removing stopwords/punctuation | |
if "empty vocabulary" in str(e).lower(): | |
return [] # Return an empty list -> no keywords | |
else: | |
raise e # Something else went wrong | |
feature_names = vectorizer.get_feature_names_out() | |
scores = tfidf_matrix.toarray()[0] | |
word_score_pairs = list(zip(feature_names, scores)) | |
word_score_pairs.sort(key=lambda x: x[1], reverse=True) | |
return [w for (w, _) in word_score_pairs[:top_n]] | |