Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 1,465 Bytes
06bd223 daaad57 0059f4a 06bd223 f45fad6 daaad57 f45fad6 daaad57 f45fad6 daaad57 3a726ab f45fad6 daaad57 f45fad6 06bd223 0059f4a daaad57 f45fad6 daaad57 06bd223 3a726ab daaad57 06bd223 daaad57 3a726ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
import re
import langdetect
from stopwordsiso import stopwords, has_lang
from sklearn.feature_extraction.text import TfidfVectorizer
def detect_language(text):
try:
return langdetect.detect(text)
except:
return "en"
def get_stopwords_for_language(lang_code):
lang_code = lang_code.lower()
if has_lang(lang_code):
return stopwords(lang_code) # returns a set of stopwords
return set()
def extract_top_keywords(text, top_n=5):
# Basic cleanup
cleaned_text = re.sub(r"[^\w\s]", " ", text.lower())
lang_code = detect_language(cleaned_text)
language_stopwords = get_stopwords_for_language(lang_code)
# Convert stopwords set to list because TfidfVectorizer needs list/None/'english'
stopwords_list = list(language_stopwords)
vectorizer = TfidfVectorizer(stop_words=stopwords_list)
try:
tfidf_matrix = vectorizer.fit_transform([cleaned_text])
except ValueError as e:
# If there's nothing left after removing stopwords/punctuation
if "empty vocabulary" in str(e).lower():
return [] # Return an empty list -> no keywords
else:
raise e # Something else went wrong
feature_names = vectorizer.get_feature_names_out()
scores = tfidf_matrix.toarray()[0]
word_score_pairs = list(zip(feature_names, scores))
word_score_pairs.sort(key=lambda x: x[1], reverse=True)
return [w for (w, _) in word_score_pairs[:top_n]]
|