Spaces:
Sleeping
Sleeping
Update appStore/tfidf_extraction.py
Browse files- appStore/tfidf_extraction.py +20 -12
appStore/tfidf_extraction.py
CHANGED
@@ -3,33 +3,41 @@ import langdetect
|
|
3 |
from stopwordsiso import stopwords, has_lang
|
4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
|
6 |
-
def detect_language(text
|
7 |
try:
|
8 |
return langdetect.detect(text)
|
9 |
except:
|
10 |
-
return "en"
|
11 |
|
12 |
-
def get_stopwords_for_language(lang_code
|
13 |
lang_code = lang_code.lower()
|
14 |
if has_lang(lang_code):
|
15 |
-
return stopwords(lang_code) # returns a
|
16 |
-
|
17 |
-
return set()
|
18 |
|
19 |
-
def extract_top_keywords(text
|
|
|
20 |
cleaned_text = re.sub(r"[^\w\s]", " ", text.lower())
|
21 |
-
|
22 |
lang_code = detect_language(cleaned_text)
|
23 |
language_stopwords = get_stopwords_for_language(lang_code)
|
24 |
|
25 |
-
# Convert
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
tfidf_matrix = vectorizer.fit_transform([cleaned_text])
|
29 |
feature_names = vectorizer.get_feature_names_out()
|
30 |
scores = tfidf_matrix.toarray()[0]
|
31 |
|
32 |
-
# Pair up (word, score), then sort descending
|
33 |
word_score_pairs = list(zip(feature_names, scores))
|
34 |
word_score_pairs.sort(key=lambda x: x[1], reverse=True)
|
35 |
|
|
|
3 |
from stopwordsiso import stopwords, has_lang
|
4 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
5 |
|
6 |
+
def detect_language(text):
|
7 |
try:
|
8 |
return langdetect.detect(text)
|
9 |
except:
|
10 |
+
return "en"
|
11 |
|
12 |
+
def get_stopwords_for_language(lang_code):
|
13 |
lang_code = lang_code.lower()
|
14 |
if has_lang(lang_code):
|
15 |
+
return stopwords(lang_code) # returns a set of stopwords
|
16 |
+
return set()
|
|
|
17 |
|
18 |
+
def extract_top_keywords(text, top_n=5):
|
19 |
+
# Basic cleanup
|
20 |
cleaned_text = re.sub(r"[^\w\s]", " ", text.lower())
|
|
|
21 |
lang_code = detect_language(cleaned_text)
|
22 |
language_stopwords = get_stopwords_for_language(lang_code)
|
23 |
|
24 |
+
# Convert stopwords set to list because TfidfVectorizer needs list/None/'english'
|
25 |
+
stopwords_list = list(language_stopwords)
|
26 |
+
|
27 |
+
vectorizer = TfidfVectorizer(stop_words=stopwords_list)
|
28 |
+
|
29 |
+
try:
|
30 |
+
tfidf_matrix = vectorizer.fit_transform([cleaned_text])
|
31 |
+
except ValueError as e:
|
32 |
+
# If there's nothing left after removing stopwords/punctuation
|
33 |
+
if "empty vocabulary" in str(e).lower():
|
34 |
+
return [] # Return an empty list -> no keywords
|
35 |
+
else:
|
36 |
+
raise e # Something else went wrong
|
37 |
|
|
|
38 |
feature_names = vectorizer.get_feature_names_out()
|
39 |
scores = tfidf_matrix.toarray()[0]
|
40 |
|
|
|
41 |
word_score_pairs = list(zip(feature_names, scores))
|
42 |
word_score_pairs.sort(key=lambda x: x[1], reverse=True)
|
43 |
|