Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 4,796 Bytes
0130713 c2f0c5c e44062d 5a1352d c567921 cb359de 9d9ace2 50fbfdd f5dac9b 0130713 d845358 e4b8dd5 9392032 391fa92 9392032 391fa92 9392032 c567921 5a1352d 5170600 9392032 5a1352d d845358 4ec0c95 d845358 4ec0c95 d845358 4ec0c95 d845358 4681487 eb00b52 e44062d 7471ef6 3fe1fb4 d845358 4ec0c95 d845358 4ec0c95 d845358 4ec0c95 d845358 4ec0c95 d845358 7471ef6 c567921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
import streamlit as st
import pandas as pd
from appStore.prep_data import process_giz_worldwide
from appStore.prep_utils import create_documents, get_client
from appStore.embed import hybrid_embed_chunks
from appStore.search import hybrid_search
from torch import cuda
import json
# get the device to be used eithe gpu or cpu
device = 'cuda' if cuda.is_available() else 'cpu'
st.set_page_config(page_title="SEARCH IATI",layout='wide')
st.title("GIZ Project Database")
var = st.text_input("Enter Search Query")
#################### Create the embeddings collection and save ######################
# the steps below need to be performed only once and then commented out any unnecssary compute over-run
##### First we process and create the chunks for relvant data source
#chunks = process_giz_worldwide()
##### Convert to langchain documents
#temp_doc = create_documents(chunks,'chunks')
##### Embed and store docs, check if collection exist then you need to update the collection
collection_name = "giz_worldwide"
#hybrid_embed_chunks(docs= temp_doc, collection_name = collection_name)
################### Hybrid Search ######################################################
client = get_client()
print(client.get_collections())
# Fetch unique country codes from the metadata for the dropdown
@st.cache_data
def get_unique_countries(_client, collection_name):
results = hybrid_search(_client, "", collection_name)
country_set = set()
for res in results[0] + results[1]:
countries = res.payload.get('metadata', {}).get('countries', "[]")
try:
country_list = json.loads(countries.replace("'", '"'))
country_set.update(country_list)
except json.JSONDecodeError:
pass
return sorted(list(country_set))
unique_countries = get_unique_countries(client, collection_name)
# Layout filters in columns
col1, col2, col3 = st.columns([1, 1, 4])
with col1:
country_filter = st.selectbox("Country Code", ["All"] + unique_countries)
with col2:
end_year_range = st.slider("Project End Year", min_value=2010, max_value=2030, value=(2010, 2030))
# Checkbox to control whether to show only exact matches
show_exact_matches = st.checkbox("Show only exact matches", value=False)
button=st.button("Search")
#found_docs = vectorstore.similarity_search(var)
#print(found_docs)
# results= get_context(vectorstore, f"find the relvant paragraphs for: {var}")
if button:
results = hybrid_search(client, var, collection_name)
# Filter results based on the user's input
def filter_results(results, country_filter, end_year_range):
filtered = []
for res in results:
metadata = res.payload.get('metadata', {})
countries = metadata.get('countries', "[]")
end_year = float(metadata.get('end_year', 0))
# Process countries string to a list
try:
country_list = json.loads(countries.replace("'", '"'))
except json.JSONDecodeError:
country_list = []
# Apply country and year filters
if (country_filter == "All" or country_filter in country_list) and (end_year_range[0] <= end_year <= end_year_range[1]):
filtered.append(res)
return filtered
# Check user preference for exact matches
if show_exact_matches:
st.write(f"Showing **Top 10 Lexical Search results** for query: {var}")
lexical_results = results[1] # Lexical results are in index 1
filtered_lexical_results = filter_results(lexical_results, country_filter, end_year_range)
for res in filtered_lexical_results[:10]:
project_name = res.payload['metadata'].get('project_name', 'Project Link')
url = res.payload['metadata'].get('url', '#')
st.markdown(f"#### [{project_name}]({url})")
st.write(res.payload['page_content'])
st.divider()
else:
st.write(f"Showing **Top 10 Semantic Search results** for query: {var}")
semantic_results = results[0] # Semantic results are in index 0
filtered_semantic_results = filter_results(semantic_results, country_filter, end_year_range)
for res in filtered_semantic_results[:10]:
project_name = res.payload['metadata'].get('project_name', 'Project Link')
url = res.payload['metadata'].get('url', '#')
st.markdown(f"#### [{project_name}]({url})")
st.write(res.payload['page_content'])
st.divider()
# for i in results:
# st.subheader(str(i.metadata['id'])+":"+str(i.metadata['title_main']))
# st.caption(f"Status:{str(i.metadata['status'])}, Country:{str(i.metadata['country_name'])}")
# st.write(i.page_content)
# st.divider()
|