Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
hybrid test
Browse files- app.py +9 -25
- appStore/embed.py +31 -0
app.py
CHANGED
@@ -7,8 +7,9 @@ from qdrant_client import QdrantClient
|
|
7 |
from langchain.retrievers import ContextualCompressionRetriever
|
8 |
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
9 |
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
10 |
-
from langchain_qdrant import FastEmbedSparse, RetrievalMode
|
11 |
from appStore.prep_data import process_giz_worldwide
|
|
|
|
|
12 |
|
13 |
# get the device to be used eithe gpu or cpu
|
14 |
device = 'cuda' if cuda.is_available() else 'cpu'
|
@@ -18,28 +19,6 @@ st.set_page_config(page_title="SEARCH IATI",layout='wide')
|
|
18 |
st.title("SEARCH IATI Database")
|
19 |
var=st.text_input("enter keyword")
|
20 |
|
21 |
-
def embed_chunks(chunks):
|
22 |
-
"""
|
23 |
-
takes the chunks and does the hybrid embedding for the list of chunks
|
24 |
-
"""
|
25 |
-
embeddings = HuggingFaceEmbeddings(
|
26 |
-
model_kwargs = {'device': device},
|
27 |
-
encode_kwargs = {'normalize_embeddings': True},
|
28 |
-
model_name='BAAI/bge-m3'
|
29 |
-
)
|
30 |
-
#sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25")
|
31 |
-
# placeholder for collection
|
32 |
-
print("starting embedding")
|
33 |
-
qdrant_collections = {}
|
34 |
-
qdrant_collections['all'] = Qdrant.from_documents(
|
35 |
-
chunks,
|
36 |
-
embeddings,
|
37 |
-
path="/data/local_qdrant",
|
38 |
-
collection_name='all',
|
39 |
-
)
|
40 |
-
|
41 |
-
print(qdrant_collections)
|
42 |
-
print("vector embeddings done")
|
43 |
|
44 |
@st.cache_resource
|
45 |
def get_local_qdrant():
|
@@ -77,7 +56,12 @@ def get_context(vectorstore,query):
|
|
77 |
# first we create the chunks for iati documents
|
78 |
chunks = process_giz_worldwide()
|
79 |
for i in range(5):
|
80 |
-
print(chunks.loc[
|
|
|
|
|
|
|
|
|
|
|
81 |
#print("chunking done")
|
82 |
|
83 |
# once the chunks are done, we perform hybrid emebddings
|
@@ -85,7 +69,7 @@ for i in range(5):
|
|
85 |
|
86 |
# vectorstores = get_local_qdrant()
|
87 |
# vectorstore = vectorstores['all']
|
88 |
-
|
89 |
# results= get_context(vectorstore, f"find the relvant paragraphs for: {var}")
|
90 |
if button:
|
91 |
st.write(f"Found {len(results)} results for query:{var}")
|
|
|
7 |
from langchain.retrievers import ContextualCompressionRetriever
|
8 |
from langchain.retrievers.document_compressors import CrossEncoderReranker
|
9 |
from langchain_community.cross_encoders import HuggingFaceCrossEncoder
|
|
|
10 |
from appStore.prep_data import process_giz_worldwide
|
11 |
+
from appStore.prep_utils import create_documents
|
12 |
+
from appStore.embed import hybrid_embed_chunks
|
13 |
|
14 |
# get the device to be used eithe gpu or cpu
|
15 |
device = 'cuda' if cuda.is_available() else 'cpu'
|
|
|
19 |
st.title("SEARCH IATI Database")
|
20 |
var=st.text_input("enter keyword")
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
@st.cache_resource
|
24 |
def get_local_qdrant():
|
|
|
56 |
# first we create the chunks for iati documents
|
57 |
chunks = process_giz_worldwide()
|
58 |
for i in range(5):
|
59 |
+
print(i,"\n",chunks.loc[i,'chunks'])
|
60 |
+
temp_df = chunks[:5]
|
61 |
+
temp_doc = create_documents(temp_df,'chunks')
|
62 |
+
hybrid_embed_chunks(temp_doc)
|
63 |
+
|
64 |
+
|
65 |
#print("chunking done")
|
66 |
|
67 |
# once the chunks are done, we perform hybrid emebddings
|
|
|
69 |
|
70 |
# vectorstores = get_local_qdrant()
|
71 |
# vectorstore = vectorstores['all']
|
72 |
+
button=st.button("search")
|
73 |
# results= get_context(vectorstore, f"find the relvant paragraphs for: {var}")
|
74 |
if button:
|
75 |
st.write(f"Found {len(results)} results for query:{var}")
|
appStore/embed.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings, HuggingFaceInferenceAPIEmbeddings
|
2 |
+
from langchain_community.vectorstores import Qdrant
|
3 |
+
from langchain_qdrant import FastEmbedSparse, RetrievalMode
|
4 |
+
# get the device to be used eithe gpu or cpu
|
5 |
+
device = 'cuda' if cuda.is_available() else 'cpu'
|
6 |
+
|
7 |
+
|
8 |
+
def hybrid_embed_chunks(chunks):
|
9 |
+
"""
|
10 |
+
takes the chunks and does the hybrid embedding for the list of chunks
|
11 |
+
"""
|
12 |
+
embeddings = HuggingFaceEmbeddings(
|
13 |
+
model_kwargs = {'device': device},
|
14 |
+
encode_kwargs = {'normalize_embeddings': True},
|
15 |
+
model_name='BAAI/bge-m3'
|
16 |
+
)
|
17 |
+
sparse_embeddings = FastEmbedSparse(model_name="Qdrant/bm25")
|
18 |
+
# placeholder for collection
|
19 |
+
print("starting embedding")
|
20 |
+
#qdrant_collections = {}
|
21 |
+
Qdrant.from_documents(
|
22 |
+
chunks,
|
23 |
+
embeddings,
|
24 |
+
sparse_embeddings = sparse_embeddings,
|
25 |
+
path="/data/local_qdrant",
|
26 |
+
collection_name='giz_worldwide',
|
27 |
+
retrieval_mode=RetrievalMode.HYBRID,
|
28 |
+
)
|
29 |
+
|
30 |
+
print(qdrant_collections)
|
31 |
+
print("vector embeddings done")
|