Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -40,24 +40,24 @@ def get_context(vectorstore,query):
|
|
40 |
return context_retrieved
|
41 |
|
42 |
# first we create the chunks for iati documents
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
|
50 |
|
51 |
-
|
52 |
|
53 |
# once the chunks are done, we perform hybrid emebddings
|
54 |
#embed_chunks(chunks)
|
55 |
|
56 |
-
vectorstores = get_local_qdrant('giz_worldwide')
|
57 |
-
vectorstore = vectorstores['giz_worldwide']
|
58 |
button=st.button("search")
|
59 |
-
found_docs = vectorstore.similarity_search(var)
|
60 |
-
print(found_docs)
|
61 |
# results= get_context(vectorstore, f"find the relvant paragraphs for: {var}")
|
62 |
if button:
|
63 |
st.write(f"Found {len(results)} results for query:{var}")
|
|
|
40 |
return context_retrieved
|
41 |
|
42 |
# first we create the chunks for iati documents
|
43 |
+
chunks = process_giz_worldwide()
|
44 |
+
for i in range(5):
|
45 |
+
print(i,"\n",chunks.loc[i,'chunks'])
|
46 |
+
temp_df = chunks[:5]
|
47 |
+
temp_doc = create_documents(temp_df,'chunks')
|
48 |
+
hybrid_embed_chunks(temp_doc, "giz_worldwide")
|
49 |
|
50 |
|
51 |
+
print("emedding done")
|
52 |
|
53 |
# once the chunks are done, we perform hybrid emebddings
|
54 |
#embed_chunks(chunks)
|
55 |
|
56 |
+
#vectorstores = get_local_qdrant('giz_worldwide')
|
57 |
+
#vectorstore = vectorstores['giz_worldwide']
|
58 |
button=st.button("search")
|
59 |
+
#found_docs = vectorstore.similarity_search(var)
|
60 |
+
#print(found_docs)
|
61 |
# results= get_context(vectorstore, f"find the relvant paragraphs for: {var}")
|
62 |
if button:
|
63 |
st.write(f"Found {len(results)} results for query:{var}")
|