Spaces:
Sleeping
Sleeping
import numpy as np | |
import gradio as gr | |
import pickle | |
import plotly.graph_objects as go | |
import plotly.express as px | |
import pandas as pd | |
# Global variable to store results | |
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?']) | |
# define a Dataframe styler to highlight the Feasible? column to be green and red | |
def highlight_success(val): | |
color = 'lightgreen' if val == 'Success' else 'lightcoral' | |
return f'color:white;background-color: {color}' | |
def sim_espray_constrained(x, noise_se=None): | |
# Define the equations | |
conc = x[:, 0] | |
flow_rate = x[:, 1] | |
voltage = x[:, 2] | |
solvent = x[:, 3] | |
diameter = (np.sqrt(conc) * np.sqrt(flow_rate)) / np.log2(voltage) * 10 + 0.4 + solvent # Diameter in micrometers | |
if noise_se is not None: | |
diameter = diameter + noise_se * np.random.randn(*diameter.shape) | |
exp_con = (np.log(flow_rate) * (solvent - 0.5) + 1.40 >= 0).astype(float) | |
return np.column_stack((diameter, exp_con)) | |
X_init = np.array([[0.5, 15, 10, 0], | |
[0.5, 0.1, 10, 1], | |
[3, 20, 15, 0], | |
[1, 20, 10, 1], | |
[0.2, 0.02, 10, 1]]) | |
Y_init = sim_espray_constrained(X_init) | |
exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']) | |
exp_record_df['Size (um)'] = Y_init[:, 0] | |
# map 1 to CHCl3 and 0 to DMAc | |
exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']] | |
exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]] | |
gr_exp_record_df = gr.DataFrame(value=exp_record_df.style.map(highlight_success, subset=['Feasible?']).format(precision=3), label="Prior Experiments") | |
def import_results(): | |
strategies = ['qEI', 'qEI_vi_mixed_con', 'qEICF_vi_mixed_con', 'rnd'] | |
# Load results from pickle file | |
with open('human_vs_BO_results.pkl', 'rb') as f: | |
best_distances = pickle.load(f) | |
# vstack all values in best_distances | |
best_distances_vstack = {k: np.vstack(best_distances[k]) for k in strategies} | |
best_distances_all_trials = -np.vstack([best_distances_vstack[k] for k in strategies]) | |
best_distances_all_trials_df = pd.DataFrame(best_distances_all_trials) | |
best_distances_all_trials_df['strategy'] = np.repeat(['Vanilla BO', 'Constrained BO', 'CCBO', 'Random'], 20) | |
best_distances_all_trials_df['trial'] = list(range(20)) * len(strategies) | |
best_distances_df_long = pd.melt(best_distances_all_trials_df, id_vars=['strategy', 'trial'], var_name='iteration', value_name='regret') | |
return best_distances_df_long | |
def calc_human_performance(df): | |
# convert back solvent to 0 and 1 | |
df['Solvent'] = [0 if x == 'DMAc' else 1 for x in df['Solvent']] | |
TARGET_SIZE = 3.0 # Example target size | |
ROUNDS = len(df) // 2 | |
X_human = df[['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']].values | |
X_human_init = X_init.copy() | |
Y_human_init = Y_init.copy() | |
best_human_distance = [] | |
for iter in range(ROUNDS + 1): | |
Y_distance = -np.abs(Y_human_init[:, 0] - TARGET_SIZE) | |
best_human_distance.append(np.ma.masked_array(Y_distance, mask=~Y_human_init[:, 1].astype(bool)).max()) | |
new_x = X_human[2 * iter:2 * (iter + 1)] | |
X_human_init = np.vstack([X_human_init, new_x]) | |
Y_human_init = np.vstack([Y_human_init, sim_espray_constrained(new_x)]) | |
return -np.array(best_human_distance) | |
def plot_results(exp_data_df): | |
# Extract human performance | |
best_human_distance = calc_human_performance(exp_data_df) | |
# Import results | |
best_distances_df_long = import_results() | |
fig = go.Figure() | |
strategies = best_distances_df_long['strategy'].unique() | |
for strategy in strategies: | |
strategy_data = best_distances_df_long[best_distances_df_long['strategy'] == strategy] | |
# Calculate mean and standard deviation | |
mean_regret = strategy_data.groupby('iteration')['regret'].mean() | |
std_regret = strategy_data.groupby('iteration')['regret'].std() | |
iterations = mean_regret.index | |
color = px.colors.qualitative.Set2[strategies.tolist().index(strategy)] | |
# Add trace for mean line | |
mean_trace = go.Scatter( | |
x=iterations, | |
y=mean_regret, | |
mode='lines', | |
name=strategy, | |
line=dict(width=2, color=color) | |
) | |
fig.add_trace(mean_trace) | |
# Add trace for shaded area (standard deviation) | |
fig.add_trace(go.Scatter( | |
x=list(iterations) + list(iterations[::-1]), | |
y=list(mean_regret + std_regret) + list((mean_regret - std_regret)[::-1]), | |
fill='toself', | |
fillcolor=mean_trace.line.color.replace('rgb', 'rgba').replace(')', ',0.2)'), | |
line=dict(color='rgba(255,255,255,0)'), | |
showlegend=False, | |
name=f'{strategy} (std dev)' | |
)) | |
# Add trace for human performance | |
fig.add_trace(go.Scatter( | |
x=list(range(len(best_human_distance))), | |
y=best_human_distance, | |
mode='lines+markers', | |
name='Human', | |
line=dict(width=2, color='brown') | |
)) | |
fig.update_layout( | |
title='Performance Comparison', | |
xaxis_title='Iteration', | |
yaxis_title='Regret (μm)', | |
legend_title='Strategy', | |
template='plotly_white', | |
legend=dict( | |
x=0.01, | |
y=0.01, | |
bgcolor='rgba(255, 255, 255, 0.5)', | |
bordercolor='rgba(0, 0, 0, 0.5)', | |
borderwidth=1 | |
) | |
) | |
return fig | |
def predict(text1, conc1, flow_rate1, voltage1, solvent1, text2, conc2, flow_rate2, voltage2, solvent2): | |
global results_storage | |
solvent_value1 = 0 if solvent1 == 'DMAc' else 1 | |
solvent_value2 = 0 if solvent2 == 'DMAc' else 1 | |
# Convert inputs to numpy array | |
inputs1 = np.array([[conc1, flow_rate1, voltage1, solvent_value1]]) | |
inputs2 = np.array([[conc2, flow_rate2, voltage2, solvent_value2]]) | |
# Get predictions | |
results1 = sim_espray_constrained(inputs1) | |
results2 = sim_espray_constrained(inputs2) | |
# Format output | |
diameter1 = results1[0, 0] | |
exp_con1 = results1[0, 1] | |
diameter2 = results2[0, 0] | |
exp_con2 = results2[0, 1] | |
# create a dataframe to store the results | |
results_df = pd.DataFrame(np.array([ | |
[conc1, flow_rate1, voltage1, solvent_value1, diameter1, exp_con1], | |
[conc2, flow_rate2, voltage2, solvent_value2, diameter2, exp_con2] | |
]), columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?']) | |
results_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in results_df['Solvent']] | |
results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']] | |
results_storage = pd.concat([results_storage, results_df], ignore_index=True) | |
results_display = results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3) | |
return (gr_exp_record_df, gr.DataFrame(value=results_display, label="Your Results"), plot_results(results_storage)) | |
inputs = [ | |
gr.Markdown("### Experiment 1"), | |
gr.Number(value=1.2, label="Concentration (%w/v, range: 0.05-5.00)", minimum=0.05, maximum=5.0, precision=3), | |
gr.Number(value=20.0, label="Flow Rate (mL/h, range: 0.01-60.00)", minimum=0.01, maximum=60.0, precision=3), | |
gr.Number(value=15.0, label="Voltage (kV, range: 10.00-18.00)", minimum=10.0, maximum=18.0, precision=3), | |
gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent'), | |
gr.Markdown("### Experiment 2"), | |
gr.Number(value=2.8, label="Concentration (%w/v, range: 0.05-5.00)", minimum=0.05, maximum=5.0, precision=3), | |
gr.Number(value=20.0, label="Flow Rate (mL/h, range: 0.01-60.00)", minimum=0.01, maximum=60.0, precision=3), | |
gr.Number(value=15.0, label="Voltage (kV, 10.00-18.00)", minimum=10.0, maximum=18.0, precision=3), | |
gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent') | |
] | |
outputs = [gr_exp_record_df, gr.DataFrame(label="Your Results"), gr.Plot(label="Performance Comparison")] | |
description = "<h3>Welcome, challenger!</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray! Rules are simple: <ul><li>Examine carefully the initial experiments you have on the right, remember, your target size is <u><i><strong>3.000</strong></i></u> ----></li><li>Select your experiment parameters, you have <strong>2</strong> experiments to run</li><li>Click <strong>Submit</strong> to see the results</li><li>Repeat the process for <strong>5</strong> iterations to see if you can beat CCBO!</li></ul></p>" | |
# Update interface | |
demo = gr.Interface( | |
fn=predict, | |
inputs=inputs, | |
outputs=outputs, | |
title="Human vs CCBO Campaign - Simulated Electrospray", | |
description=description | |
) | |
demo.launch() |