ccbo / app.py
FrankWanger's picture
first commit
509b18a
raw
history blame
9.06 kB
import numpy as np
import gradio as gr
import pickle
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
# Global variable to store results
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
# define a Dataframe styler to highlight the Feasible? column to be green and red
def highlight_success(val):
color = 'lightgreen' if val == 'Success' else 'lightcoral'
return f'color:white;background-color: {color}'
def sim_espray_constrained(x, noise_se=None):
# Define the equations
conc = x[:, 0]
flow_rate = x[:, 1]
voltage = x[:, 2]
solvent = x[:, 3]
diameter = (np.sqrt(conc) * np.sqrt(flow_rate)) / np.log2(voltage) * 10 + 0.4 + solvent # Diameter in micrometers
if noise_se is not None:
diameter = diameter + noise_se * np.random.randn(*diameter.shape)
exp_con = (np.log(flow_rate) * (solvent - 0.5) + 1.40 >= 0).astype(float)
return np.column_stack((diameter, exp_con))
X_init = np.array([[0.5, 15, 10, 0],
[0.5, 0.1, 10, 1],
[3, 20, 15, 0],
[1, 20, 10, 1],
[0.2, 0.02, 10, 1]])
Y_init = sim_espray_constrained(X_init)
exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent'])
exp_record_df['Size (um)'] = Y_init[:, 0]
# map 1 to CHCl3 and 0 to DMAc
exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']]
exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]]
gr_exp_record_df = gr.DataFrame(value=exp_record_df.style.map(highlight_success, subset=['Feasible?']).format(precision=3), label="Prior Experiments")
def import_results():
strategies = ['qEI', 'qEI_vi_mixed_con', 'qEICF_vi_mixed_con', 'rnd']
# Load results from pickle file
with open('human_vs_BO_results.pkl', 'rb') as f:
best_distances = pickle.load(f)
# vstack all values in best_distances
best_distances_vstack = {k: np.vstack(best_distances[k]) for k in strategies}
best_distances_all_trials = -np.vstack([best_distances_vstack[k] for k in strategies])
best_distances_all_trials_df = pd.DataFrame(best_distances_all_trials)
best_distances_all_trials_df['strategy'] = np.repeat(['Vanilla BO', 'Constrained BO', 'CCBO', 'Random'], 20)
best_distances_all_trials_df['trial'] = list(range(20)) * len(strategies)
best_distances_df_long = pd.melt(best_distances_all_trials_df, id_vars=['strategy', 'trial'], var_name='iteration', value_name='regret')
return best_distances_df_long
def calc_human_performance(df):
# convert back solvent to 0 and 1
df['Solvent'] = [0 if x == 'DMAc' else 1 for x in df['Solvent']]
TARGET_SIZE = 3.0 # Example target size
ROUNDS = len(df) // 2
X_human = df[['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']].values
X_human_init = X_init.copy()
Y_human_init = Y_init.copy()
best_human_distance = []
for iter in range(ROUNDS + 1):
Y_distance = -np.abs(Y_human_init[:, 0] - TARGET_SIZE)
best_human_distance.append(np.ma.masked_array(Y_distance, mask=~Y_human_init[:, 1].astype(bool)).max())
new_x = X_human[2 * iter:2 * (iter + 1)]
X_human_init = np.vstack([X_human_init, new_x])
Y_human_init = np.vstack([Y_human_init, sim_espray_constrained(new_x)])
return -np.array(best_human_distance)
def plot_results(exp_data_df):
# Extract human performance
best_human_distance = calc_human_performance(exp_data_df)
# Import results
best_distances_df_long = import_results()
fig = go.Figure()
strategies = best_distances_df_long['strategy'].unique()
for strategy in strategies:
strategy_data = best_distances_df_long[best_distances_df_long['strategy'] == strategy]
# Calculate mean and standard deviation
mean_regret = strategy_data.groupby('iteration')['regret'].mean()
std_regret = strategy_data.groupby('iteration')['regret'].std()
iterations = mean_regret.index
color = px.colors.qualitative.Set2[strategies.tolist().index(strategy)]
# Add trace for mean line
mean_trace = go.Scatter(
x=iterations,
y=mean_regret,
mode='lines',
name=strategy,
line=dict(width=2, color=color)
)
fig.add_trace(mean_trace)
# Add trace for shaded area (standard deviation)
fig.add_trace(go.Scatter(
x=list(iterations) + list(iterations[::-1]),
y=list(mean_regret + std_regret) + list((mean_regret - std_regret)[::-1]),
fill='toself',
fillcolor=mean_trace.line.color.replace('rgb', 'rgba').replace(')', ',0.2)'),
line=dict(color='rgba(255,255,255,0)'),
showlegend=False,
name=f'{strategy} (std dev)'
))
# Add trace for human performance
fig.add_trace(go.Scatter(
x=list(range(len(best_human_distance))),
y=best_human_distance,
mode='lines+markers',
name='Human',
line=dict(width=2, color='brown')
))
fig.update_layout(
title='Performance Comparison',
xaxis_title='Iteration',
yaxis_title='Regret (μm)',
legend_title='Strategy',
template='plotly_white',
legend=dict(
x=0.01,
y=0.01,
bgcolor='rgba(255, 255, 255, 0.5)',
bordercolor='rgba(0, 0, 0, 0.5)',
borderwidth=1
)
)
return fig
def predict(text1, conc1, flow_rate1, voltage1, solvent1, text2, conc2, flow_rate2, voltage2, solvent2):
global results_storage
solvent_value1 = 0 if solvent1 == 'DMAc' else 1
solvent_value2 = 0 if solvent2 == 'DMAc' else 1
# Convert inputs to numpy array
inputs1 = np.array([[conc1, flow_rate1, voltage1, solvent_value1]])
inputs2 = np.array([[conc2, flow_rate2, voltage2, solvent_value2]])
# Get predictions
results1 = sim_espray_constrained(inputs1)
results2 = sim_espray_constrained(inputs2)
# Format output
diameter1 = results1[0, 0]
exp_con1 = results1[0, 1]
diameter2 = results2[0, 0]
exp_con2 = results2[0, 1]
# create a dataframe to store the results
results_df = pd.DataFrame(np.array([
[conc1, flow_rate1, voltage1, solvent_value1, diameter1, exp_con1],
[conc2, flow_rate2, voltage2, solvent_value2, diameter2, exp_con2]
]), columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
results_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in results_df['Solvent']]
results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']]
results_storage = pd.concat([results_storage, results_df], ignore_index=True)
results_display = results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3)
return (gr_exp_record_df, gr.DataFrame(value=results_display, label="Your Results"), plot_results(results_storage))
inputs = [
gr.Markdown("### Experiment 1"),
gr.Number(value=1.2, label="Concentration (%w/v, range: 0.05-5.00)", minimum=0.05, maximum=5.0, precision=3),
gr.Number(value=20.0, label="Flow Rate (mL/h, range: 0.01-60.00)", minimum=0.01, maximum=60.0, precision=3),
gr.Number(value=15.0, label="Voltage (kV, range: 10.00-18.00)", minimum=10.0, maximum=18.0, precision=3),
gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent'),
gr.Markdown("### Experiment 2"),
gr.Number(value=2.8, label="Concentration (%w/v, range: 0.05-5.00)", minimum=0.05, maximum=5.0, precision=3),
gr.Number(value=20.0, label="Flow Rate (mL/h, range: 0.01-60.00)", minimum=0.01, maximum=60.0, precision=3),
gr.Number(value=15.0, label="Voltage (kV, 10.00-18.00)", minimum=10.0, maximum=18.0, precision=3),
gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent')
]
outputs = [gr_exp_record_df, gr.DataFrame(label="Your Results"), gr.Plot(label="Performance Comparison")]
description = "<h3>Welcome, challenger!</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray! Rules are simple: <ul><li>Examine carefully the initial experiments you have on the right, remember, your target size is <u><i><strong>3.000</strong></i></u> ----></li><li>Select your experiment parameters, you have <strong>2</strong> experiments to run</li><li>Click <strong>Submit</strong> to see the results</li><li>Repeat the process for <strong>5</strong> iterations to see if you can beat CCBO!</li></ul></p>"
# Update interface
demo = gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title="Human vs CCBO Campaign - Simulated Electrospray",
description=description
)
demo.launch()