FrankWanger commited on
Commit
509b18a
·
1 Parent(s): 71d382d

first commit

Browse files
Files changed (3) hide show
  1. app.py +211 -0
  2. human_vs_BO_results.pkl +3 -0
  3. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import gradio as gr
3
+ import pickle
4
+
5
+ import plotly.graph_objects as go
6
+ import plotly.express as px
7
+
8
+ import pandas as pd
9
+
10
+ # Global variable to store results
11
+ results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
12
+
13
+ # define a Dataframe styler to highlight the Feasible? column to be green and red
14
+ def highlight_success(val):
15
+ color = 'lightgreen' if val == 'Success' else 'lightcoral'
16
+ return f'color:white;background-color: {color}'
17
+
18
+ def sim_espray_constrained(x, noise_se=None):
19
+ # Define the equations
20
+ conc = x[:, 0]
21
+ flow_rate = x[:, 1]
22
+ voltage = x[:, 2]
23
+ solvent = x[:, 3]
24
+ diameter = (np.sqrt(conc) * np.sqrt(flow_rate)) / np.log2(voltage) * 10 + 0.4 + solvent # Diameter in micrometers
25
+ if noise_se is not None:
26
+ diameter = diameter + noise_se * np.random.randn(*diameter.shape)
27
+ exp_con = (np.log(flow_rate) * (solvent - 0.5) + 1.40 >= 0).astype(float)
28
+ return np.column_stack((diameter, exp_con))
29
+
30
+ X_init = np.array([[0.5, 15, 10, 0],
31
+ [0.5, 0.1, 10, 1],
32
+ [3, 20, 15, 0],
33
+ [1, 20, 10, 1],
34
+ [0.2, 0.02, 10, 1]])
35
+
36
+ Y_init = sim_espray_constrained(X_init)
37
+ exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent'])
38
+ exp_record_df['Size (um)'] = Y_init[:, 0]
39
+ # map 1 to CHCl3 and 0 to DMAc
40
+ exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']]
41
+ exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]]
42
+
43
+ gr_exp_record_df = gr.DataFrame(value=exp_record_df.style.map(highlight_success, subset=['Feasible?']).format(precision=3), label="Prior Experiments")
44
+
45
+ def import_results():
46
+ strategies = ['qEI', 'qEI_vi_mixed_con', 'qEICF_vi_mixed_con', 'rnd']
47
+
48
+ # Load results from pickle file
49
+ with open('human_vs_BO_results.pkl', 'rb') as f:
50
+ best_distances = pickle.load(f)
51
+
52
+ # vstack all values in best_distances
53
+ best_distances_vstack = {k: np.vstack(best_distances[k]) for k in strategies}
54
+ best_distances_all_trials = -np.vstack([best_distances_vstack[k] for k in strategies])
55
+ best_distances_all_trials_df = pd.DataFrame(best_distances_all_trials)
56
+ best_distances_all_trials_df['strategy'] = np.repeat(['Vanilla BO', 'Constrained BO', 'CCBO', 'Random'], 20)
57
+ best_distances_all_trials_df['trial'] = list(range(20)) * len(strategies)
58
+
59
+ best_distances_df_long = pd.melt(best_distances_all_trials_df, id_vars=['strategy', 'trial'], var_name='iteration', value_name='regret')
60
+ return best_distances_df_long
61
+
62
+ def calc_human_performance(df):
63
+ # convert back solvent to 0 and 1
64
+ df['Solvent'] = [0 if x == 'DMAc' else 1 for x in df['Solvent']]
65
+
66
+ TARGET_SIZE = 3.0 # Example target size
67
+ ROUNDS = len(df) // 2
68
+
69
+ X_human = df[['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']].values
70
+
71
+ X_human_init = X_init.copy()
72
+ Y_human_init = Y_init.copy()
73
+
74
+ best_human_distance = []
75
+
76
+ for iter in range(ROUNDS + 1):
77
+ Y_distance = -np.abs(Y_human_init[:, 0] - TARGET_SIZE)
78
+ best_human_distance.append(np.ma.masked_array(Y_distance, mask=~Y_human_init[:, 1].astype(bool)).max())
79
+ new_x = X_human[2 * iter:2 * (iter + 1)]
80
+ X_human_init = np.vstack([X_human_init, new_x])
81
+ Y_human_init = np.vstack([Y_human_init, sim_espray_constrained(new_x)])
82
+
83
+ return -np.array(best_human_distance)
84
+
85
+ def plot_results(exp_data_df):
86
+ # Extract human performance
87
+ best_human_distance = calc_human_performance(exp_data_df)
88
+
89
+ # Import results
90
+ best_distances_df_long = import_results()
91
+
92
+ fig = go.Figure()
93
+
94
+ strategies = best_distances_df_long['strategy'].unique()
95
+
96
+ for strategy in strategies:
97
+ strategy_data = best_distances_df_long[best_distances_df_long['strategy'] == strategy]
98
+
99
+ # Calculate mean and standard deviation
100
+ mean_regret = strategy_data.groupby('iteration')['regret'].mean()
101
+ std_regret = strategy_data.groupby('iteration')['regret'].std()
102
+
103
+ iterations = mean_regret.index
104
+ color = px.colors.qualitative.Set2[strategies.tolist().index(strategy)]
105
+
106
+ # Add trace for mean line
107
+ mean_trace = go.Scatter(
108
+ x=iterations,
109
+ y=mean_regret,
110
+ mode='lines',
111
+ name=strategy,
112
+ line=dict(width=2, color=color)
113
+ )
114
+ fig.add_trace(mean_trace)
115
+
116
+ # Add trace for shaded area (standard deviation)
117
+ fig.add_trace(go.Scatter(
118
+ x=list(iterations) + list(iterations[::-1]),
119
+ y=list(mean_regret + std_regret) + list((mean_regret - std_regret)[::-1]),
120
+ fill='toself',
121
+ fillcolor=mean_trace.line.color.replace('rgb', 'rgba').replace(')', ',0.2)'),
122
+ line=dict(color='rgba(255,255,255,0)'),
123
+ showlegend=False,
124
+ name=f'{strategy} (std dev)'
125
+ ))
126
+ # Add trace for human performance
127
+ fig.add_trace(go.Scatter(
128
+ x=list(range(len(best_human_distance))),
129
+ y=best_human_distance,
130
+ mode='lines+markers',
131
+ name='Human',
132
+ line=dict(width=2, color='brown')
133
+ ))
134
+
135
+ fig.update_layout(
136
+ title='Performance Comparison',
137
+ xaxis_title='Iteration',
138
+ yaxis_title='Regret (μm)',
139
+ legend_title='Strategy',
140
+ template='plotly_white',
141
+ legend=dict(
142
+ x=0.01,
143
+ y=0.01,
144
+ bgcolor='rgba(255, 255, 255, 0.5)',
145
+ bordercolor='rgba(0, 0, 0, 0.5)',
146
+ borderwidth=1
147
+ )
148
+ )
149
+
150
+ return fig
151
+
152
+ def predict(text1, conc1, flow_rate1, voltage1, solvent1, text2, conc2, flow_rate2, voltage2, solvent2):
153
+ global results_storage
154
+ solvent_value1 = 0 if solvent1 == 'DMAc' else 1
155
+ solvent_value2 = 0 if solvent2 == 'DMAc' else 1
156
+
157
+ # Convert inputs to numpy array
158
+ inputs1 = np.array([[conc1, flow_rate1, voltage1, solvent_value1]])
159
+ inputs2 = np.array([[conc2, flow_rate2, voltage2, solvent_value2]])
160
+
161
+ # Get predictions
162
+ results1 = sim_espray_constrained(inputs1)
163
+ results2 = sim_espray_constrained(inputs2)
164
+
165
+ # Format output
166
+ diameter1 = results1[0, 0]
167
+ exp_con1 = results1[0, 1]
168
+
169
+ diameter2 = results2[0, 0]
170
+ exp_con2 = results2[0, 1]
171
+
172
+ # create a dataframe to store the results
173
+ results_df = pd.DataFrame(np.array([
174
+ [conc1, flow_rate1, voltage1, solvent_value1, diameter1, exp_con1],
175
+ [conc2, flow_rate2, voltage2, solvent_value2, diameter2, exp_con2]
176
+ ]), columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
177
+
178
+ results_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in results_df['Solvent']]
179
+ results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']]
180
+
181
+ results_storage = pd.concat([results_storage, results_df], ignore_index=True)
182
+ results_display = results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3)
183
+
184
+ return (gr_exp_record_df, gr.DataFrame(value=results_display, label="Your Results"), plot_results(results_storage))
185
+
186
+ inputs = [
187
+ gr.Markdown("### Experiment 1"),
188
+ gr.Number(value=1.2, label="Concentration (%w/v, range: 0.05-5.00)", minimum=0.05, maximum=5.0, precision=3),
189
+ gr.Number(value=20.0, label="Flow Rate (mL/h, range: 0.01-60.00)", minimum=0.01, maximum=60.0, precision=3),
190
+ gr.Number(value=15.0, label="Voltage (kV, range: 10.00-18.00)", minimum=10.0, maximum=18.0, precision=3),
191
+ gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent'),
192
+ gr.Markdown("### Experiment 2"),
193
+ gr.Number(value=2.8, label="Concentration (%w/v, range: 0.05-5.00)", minimum=0.05, maximum=5.0, precision=3),
194
+ gr.Number(value=20.0, label="Flow Rate (mL/h, range: 0.01-60.00)", minimum=0.01, maximum=60.0, precision=3),
195
+ gr.Number(value=15.0, label="Voltage (kV, 10.00-18.00)", minimum=10.0, maximum=18.0, precision=3),
196
+ gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent')
197
+ ]
198
+
199
+ outputs = [gr_exp_record_df, gr.DataFrame(label="Your Results"), gr.Plot(label="Performance Comparison")]
200
+
201
+ description = "<h3>Welcome, challenger!</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray! Rules are simple: <ul><li>Examine carefully the initial experiments you have on the right, remember, your target size is <u><i><strong>3.000</strong></i></u> ----></li><li>Select your experiment parameters, you have <strong>2</strong> experiments to run</li><li>Click <strong>Submit</strong> to see the results</li><li>Repeat the process for <strong>5</strong> iterations to see if you can beat CCBO!</li></ul></p>"
202
+
203
+ # Update interface
204
+ demo = gr.Interface(
205
+ fn=predict,
206
+ inputs=inputs,
207
+ outputs=outputs,
208
+ title="Human vs CCBO Campaign - Simulated Electrospray",
209
+ description=description
210
+ )
211
+ demo.launch()
human_vs_BO_results.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:091a2beae4611558eb610af040aeb74a2cba763f6a43fc218f033295d3bdd9fc
3
+ size 9179
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ numpy
2
+ torch
3
+ pandas
4
+ plotly