Spaces:
Sleeping
Sleeping
File size: 9,057 Bytes
509b18a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import numpy as np
import gradio as gr
import pickle
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
# Global variable to store results
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
# define a Dataframe styler to highlight the Feasible? column to be green and red
def highlight_success(val):
color = 'lightgreen' if val == 'Success' else 'lightcoral'
return f'color:white;background-color: {color}'
def sim_espray_constrained(x, noise_se=None):
# Define the equations
conc = x[:, 0]
flow_rate = x[:, 1]
voltage = x[:, 2]
solvent = x[:, 3]
diameter = (np.sqrt(conc) * np.sqrt(flow_rate)) / np.log2(voltage) * 10 + 0.4 + solvent # Diameter in micrometers
if noise_se is not None:
diameter = diameter + noise_se * np.random.randn(*diameter.shape)
exp_con = (np.log(flow_rate) * (solvent - 0.5) + 1.40 >= 0).astype(float)
return np.column_stack((diameter, exp_con))
X_init = np.array([[0.5, 15, 10, 0],
[0.5, 0.1, 10, 1],
[3, 20, 15, 0],
[1, 20, 10, 1],
[0.2, 0.02, 10, 1]])
Y_init = sim_espray_constrained(X_init)
exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent'])
exp_record_df['Size (um)'] = Y_init[:, 0]
# map 1 to CHCl3 and 0 to DMAc
exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']]
exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]]
gr_exp_record_df = gr.DataFrame(value=exp_record_df.style.map(highlight_success, subset=['Feasible?']).format(precision=3), label="Prior Experiments")
def import_results():
strategies = ['qEI', 'qEI_vi_mixed_con', 'qEICF_vi_mixed_con', 'rnd']
# Load results from pickle file
with open('human_vs_BO_results.pkl', 'rb') as f:
best_distances = pickle.load(f)
# vstack all values in best_distances
best_distances_vstack = {k: np.vstack(best_distances[k]) for k in strategies}
best_distances_all_trials = -np.vstack([best_distances_vstack[k] for k in strategies])
best_distances_all_trials_df = pd.DataFrame(best_distances_all_trials)
best_distances_all_trials_df['strategy'] = np.repeat(['Vanilla BO', 'Constrained BO', 'CCBO', 'Random'], 20)
best_distances_all_trials_df['trial'] = list(range(20)) * len(strategies)
best_distances_df_long = pd.melt(best_distances_all_trials_df, id_vars=['strategy', 'trial'], var_name='iteration', value_name='regret')
return best_distances_df_long
def calc_human_performance(df):
# convert back solvent to 0 and 1
df['Solvent'] = [0 if x == 'DMAc' else 1 for x in df['Solvent']]
TARGET_SIZE = 3.0 # Example target size
ROUNDS = len(df) // 2
X_human = df[['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']].values
X_human_init = X_init.copy()
Y_human_init = Y_init.copy()
best_human_distance = []
for iter in range(ROUNDS + 1):
Y_distance = -np.abs(Y_human_init[:, 0] - TARGET_SIZE)
best_human_distance.append(np.ma.masked_array(Y_distance, mask=~Y_human_init[:, 1].astype(bool)).max())
new_x = X_human[2 * iter:2 * (iter + 1)]
X_human_init = np.vstack([X_human_init, new_x])
Y_human_init = np.vstack([Y_human_init, sim_espray_constrained(new_x)])
return -np.array(best_human_distance)
def plot_results(exp_data_df):
# Extract human performance
best_human_distance = calc_human_performance(exp_data_df)
# Import results
best_distances_df_long = import_results()
fig = go.Figure()
strategies = best_distances_df_long['strategy'].unique()
for strategy in strategies:
strategy_data = best_distances_df_long[best_distances_df_long['strategy'] == strategy]
# Calculate mean and standard deviation
mean_regret = strategy_data.groupby('iteration')['regret'].mean()
std_regret = strategy_data.groupby('iteration')['regret'].std()
iterations = mean_regret.index
color = px.colors.qualitative.Set2[strategies.tolist().index(strategy)]
# Add trace for mean line
mean_trace = go.Scatter(
x=iterations,
y=mean_regret,
mode='lines',
name=strategy,
line=dict(width=2, color=color)
)
fig.add_trace(mean_trace)
# Add trace for shaded area (standard deviation)
fig.add_trace(go.Scatter(
x=list(iterations) + list(iterations[::-1]),
y=list(mean_regret + std_regret) + list((mean_regret - std_regret)[::-1]),
fill='toself',
fillcolor=mean_trace.line.color.replace('rgb', 'rgba').replace(')', ',0.2)'),
line=dict(color='rgba(255,255,255,0)'),
showlegend=False,
name=f'{strategy} (std dev)'
))
# Add trace for human performance
fig.add_trace(go.Scatter(
x=list(range(len(best_human_distance))),
y=best_human_distance,
mode='lines+markers',
name='Human',
line=dict(width=2, color='brown')
))
fig.update_layout(
title='Performance Comparison',
xaxis_title='Iteration',
yaxis_title='Regret (μm)',
legend_title='Strategy',
template='plotly_white',
legend=dict(
x=0.01,
y=0.01,
bgcolor='rgba(255, 255, 255, 0.5)',
bordercolor='rgba(0, 0, 0, 0.5)',
borderwidth=1
)
)
return fig
def predict(text1, conc1, flow_rate1, voltage1, solvent1, text2, conc2, flow_rate2, voltage2, solvent2):
global results_storage
solvent_value1 = 0 if solvent1 == 'DMAc' else 1
solvent_value2 = 0 if solvent2 == 'DMAc' else 1
# Convert inputs to numpy array
inputs1 = np.array([[conc1, flow_rate1, voltage1, solvent_value1]])
inputs2 = np.array([[conc2, flow_rate2, voltage2, solvent_value2]])
# Get predictions
results1 = sim_espray_constrained(inputs1)
results2 = sim_espray_constrained(inputs2)
# Format output
diameter1 = results1[0, 0]
exp_con1 = results1[0, 1]
diameter2 = results2[0, 0]
exp_con2 = results2[0, 1]
# create a dataframe to store the results
results_df = pd.DataFrame(np.array([
[conc1, flow_rate1, voltage1, solvent_value1, diameter1, exp_con1],
[conc2, flow_rate2, voltage2, solvent_value2, diameter2, exp_con2]
]), columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
results_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in results_df['Solvent']]
results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']]
results_storage = pd.concat([results_storage, results_df], ignore_index=True)
results_display = results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3)
return (gr_exp_record_df, gr.DataFrame(value=results_display, label="Your Results"), plot_results(results_storage))
inputs = [
gr.Markdown("### Experiment 1"),
gr.Number(value=1.2, label="Concentration (%w/v, range: 0.05-5.00)", minimum=0.05, maximum=5.0, precision=3),
gr.Number(value=20.0, label="Flow Rate (mL/h, range: 0.01-60.00)", minimum=0.01, maximum=60.0, precision=3),
gr.Number(value=15.0, label="Voltage (kV, range: 10.00-18.00)", minimum=10.0, maximum=18.0, precision=3),
gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent'),
gr.Markdown("### Experiment 2"),
gr.Number(value=2.8, label="Concentration (%w/v, range: 0.05-5.00)", minimum=0.05, maximum=5.0, precision=3),
gr.Number(value=20.0, label="Flow Rate (mL/h, range: 0.01-60.00)", minimum=0.01, maximum=60.0, precision=3),
gr.Number(value=15.0, label="Voltage (kV, 10.00-18.00)", minimum=10.0, maximum=18.0, precision=3),
gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent')
]
outputs = [gr_exp_record_df, gr.DataFrame(label="Your Results"), gr.Plot(label="Performance Comparison")]
description = "<h3>Welcome, challenger!</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray! Rules are simple: <ul><li>Examine carefully the initial experiments you have on the right, remember, your target size is <u><i><strong>3.000</strong></i></u> ----></li><li>Select your experiment parameters, you have <strong>2</strong> experiments to run</li><li>Click <strong>Submit</strong> to see the results</li><li>Repeat the process for <strong>5</strong> iterations to see if you can beat CCBO!</li></ul></p>"
# Update interface
demo = gr.Interface(
fn=predict,
inputs=inputs,
outputs=outputs,
title="Human vs CCBO Campaign - Simulated Electrospray",
description=description
)
demo.launch() |