File size: 9,057 Bytes
509b18a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import numpy as np
import gradio as gr
import pickle

import plotly.graph_objects as go
import plotly.express as px

import pandas as pd

# Global variable to store results
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])

# define a Dataframe styler to highlight the Feasible? column to be green and red
def highlight_success(val):
    color = 'lightgreen' if val == 'Success' else 'lightcoral'
    return f'color:white;background-color: {color}'

def sim_espray_constrained(x, noise_se=None):
    # Define the equations
    conc = x[:, 0]
    flow_rate = x[:, 1]
    voltage = x[:, 2]
    solvent = x[:, 3]
    diameter = (np.sqrt(conc) * np.sqrt(flow_rate)) / np.log2(voltage) * 10 + 0.4 + solvent  # Diameter in micrometers
    if noise_se is not None:
        diameter = diameter + noise_se * np.random.randn(*diameter.shape)
    exp_con = (np.log(flow_rate) * (solvent - 0.5) + 1.40 >= 0).astype(float)
    return np.column_stack((diameter, exp_con))

X_init = np.array([[0.5, 15, 10, 0],
                   [0.5, 0.1, 10, 1],
                   [3, 20, 15, 0],
                   [1, 20, 10, 1],
                   [0.2, 0.02, 10, 1]])

Y_init = sim_espray_constrained(X_init)
exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent'])
exp_record_df['Size (um)'] = Y_init[:, 0]
# map 1 to CHCl3 and 0 to DMAc
exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']]
exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]]

gr_exp_record_df = gr.DataFrame(value=exp_record_df.style.map(highlight_success, subset=['Feasible?']).format(precision=3), label="Prior Experiments")

def import_results():
    strategies = ['qEI', 'qEI_vi_mixed_con', 'qEICF_vi_mixed_con', 'rnd']
    
    # Load results from pickle file
    with open('human_vs_BO_results.pkl', 'rb') as f:
        best_distances = pickle.load(f)

    # vstack all values in best_distances
    best_distances_vstack = {k: np.vstack(best_distances[k]) for k in strategies}
    best_distances_all_trials = -np.vstack([best_distances_vstack[k] for k in strategies])
    best_distances_all_trials_df = pd.DataFrame(best_distances_all_trials)
    best_distances_all_trials_df['strategy'] = np.repeat(['Vanilla BO', 'Constrained BO', 'CCBO', 'Random'], 20)
    best_distances_all_trials_df['trial'] = list(range(20)) * len(strategies)

    best_distances_df_long = pd.melt(best_distances_all_trials_df, id_vars=['strategy', 'trial'], var_name='iteration', value_name='regret')
    return best_distances_df_long

def calc_human_performance(df):
    # convert back solvent to 0 and 1
    df['Solvent'] = [0 if x == 'DMAc' else 1 for x in df['Solvent']]
    
    TARGET_SIZE = 3.0  # Example target size
    ROUNDS = len(df) // 2

    X_human = df[['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']].values

    X_human_init = X_init.copy()
    Y_human_init = Y_init.copy()
    
    best_human_distance = []

    for iter in range(ROUNDS + 1):
        Y_distance = -np.abs(Y_human_init[:, 0] - TARGET_SIZE)
        best_human_distance.append(np.ma.masked_array(Y_distance, mask=~Y_human_init[:, 1].astype(bool)).max())
        new_x = X_human[2 * iter:2 * (iter + 1)]
        X_human_init = np.vstack([X_human_init, new_x])
        Y_human_init = np.vstack([Y_human_init, sim_espray_constrained(new_x)])

    return -np.array(best_human_distance)

def plot_results(exp_data_df):
    # Extract human performance
    best_human_distance = calc_human_performance(exp_data_df)
    
    # Import results
    best_distances_df_long = import_results()
    
    fig = go.Figure()
    
    strategies = best_distances_df_long['strategy'].unique()
    
    for strategy in strategies:
        strategy_data = best_distances_df_long[best_distances_df_long['strategy'] == strategy]
        
        # Calculate mean and standard deviation
        mean_regret = strategy_data.groupby('iteration')['regret'].mean()
        std_regret = strategy_data.groupby('iteration')['regret'].std()
        
        iterations = mean_regret.index
        color = px.colors.qualitative.Set2[strategies.tolist().index(strategy)]
        
        # Add trace for mean line
        mean_trace = go.Scatter(
            x=iterations,
            y=mean_regret,
            mode='lines',
            name=strategy,
            line=dict(width=2, color=color)
        )
        fig.add_trace(mean_trace)
        
        # Add trace for shaded area (standard deviation)
        fig.add_trace(go.Scatter(
            x=list(iterations) + list(iterations[::-1]),
            y=list(mean_regret + std_regret) + list((mean_regret - std_regret)[::-1]),
            fill='toself',
            fillcolor=mean_trace.line.color.replace('rgb', 'rgba').replace(')', ',0.2)'),
            line=dict(color='rgba(255,255,255,0)'),
            showlegend=False,
            name=f'{strategy} (std dev)'
        ))
    # Add trace for human performance
    fig.add_trace(go.Scatter(
        x=list(range(len(best_human_distance))),
        y=best_human_distance,
        mode='lines+markers',
        name='Human',
        line=dict(width=2, color='brown')
    ))

    fig.update_layout(
        title='Performance Comparison',
        xaxis_title='Iteration',
        yaxis_title='Regret (μm)',
        legend_title='Strategy',
        template='plotly_white',
        legend=dict(
            x=0.01,
            y=0.01,
            bgcolor='rgba(255, 255, 255, 0.5)',
            bordercolor='rgba(0, 0, 0, 0.5)',
            borderwidth=1
        )
    )
    
    return fig

def predict(text1, conc1, flow_rate1, voltage1, solvent1, text2, conc2, flow_rate2, voltage2, solvent2):
    global results_storage
    solvent_value1 = 0 if solvent1 == 'DMAc' else 1
    solvent_value2 = 0 if solvent2 == 'DMAc' else 1
    
    # Convert inputs to numpy array
    inputs1 = np.array([[conc1, flow_rate1, voltage1, solvent_value1]])
    inputs2 = np.array([[conc2, flow_rate2, voltage2, solvent_value2]])

    # Get predictions
    results1 = sim_espray_constrained(inputs1)
    results2 = sim_espray_constrained(inputs2)
    
    # Format output
    diameter1 = results1[0, 0]
    exp_con1 = results1[0, 1]
    
    diameter2 = results2[0, 0]
    exp_con2 = results2[0, 1]

    # create a dataframe to store the results
    results_df = pd.DataFrame(np.array([
        [conc1, flow_rate1, voltage1, solvent_value1, diameter1, exp_con1],
        [conc2, flow_rate2, voltage2, solvent_value2, diameter2, exp_con2]
    ]), columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])

    results_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in results_df['Solvent']]
    results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']]
    
    results_storage = pd.concat([results_storage, results_df], ignore_index=True)
    results_display = results_storage.style.map(highlight_success, subset=['Feasible?']).format(precision=3)
   
    return (gr_exp_record_df, gr.DataFrame(value=results_display, label="Your Results"), plot_results(results_storage))

inputs = [
    gr.Markdown("### Experiment 1"),
    gr.Number(value=1.2, label="Concentration (%w/v, range: 0.05-5.00)", minimum=0.05, maximum=5.0, precision=3),
    gr.Number(value=20.0, label="Flow Rate (mL/h, range: 0.01-60.00)", minimum=0.01, maximum=60.0, precision=3),
    gr.Number(value=15.0, label="Voltage (kV, range: 10.00-18.00)", minimum=10.0, maximum=18.0, precision=3),
    gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent'),
    gr.Markdown("### Experiment 2"),
    gr.Number(value=2.8, label="Concentration (%w/v, range: 0.05-5.00)", minimum=0.05, maximum=5.0, precision=3),
    gr.Number(value=20.0, label="Flow Rate (mL/h, range: 0.01-60.00)", minimum=0.01, maximum=60.0, precision=3),
    gr.Number(value=15.0, label="Voltage (kV, 10.00-18.00)", minimum=10.0, maximum=18.0, precision=3),
    gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent')
]

outputs = [gr_exp_record_df, gr.DataFrame(label="Your Results"), gr.Plot(label="Performance Comparison")]

description = "<h3>Welcome, challenger!</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray! Rules are simple: <ul><li>Examine carefully the initial experiments you have on the right, remember, your target size is <u><i><strong>3.000</strong></i></u> ----></li><li>Select your experiment parameters, you have <strong>2</strong> experiments to run</li><li>Click <strong>Submit</strong> to see the results</li><li>Repeat the process for <strong>5</strong> iterations to see if you can beat CCBO!</li></ul></p>"

# Update interface
demo = gr.Interface(
    fn=predict,
    inputs=inputs,
    outputs=outputs,
    title="Human vs CCBO Campaign - Simulated Electrospray",
    description=description
)
demo.launch()