File size: 20,226 Bytes
509b18a
 
 
 
 
 
250d6ba
 
509b18a
250d6ba
 
 
 
 
 
 
 
 
88f2e9d
250d6ba
 
 
 
88f2e9d
250d6ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509b18a
ef03fc8
509b18a
ef03fc8
 
 
 
 
 
 
509b18a
 
 
 
 
 
 
 
 
 
 
ef03fc8
509b18a
 
 
 
 
 
 
 
 
 
 
250d6ba
88f2e9d
 
 
 
 
 
 
 
509b18a
ef03fc8
88f2e9d
509b18a
88f2e9d
 
 
 
 
 
 
509b18a
 
 
 
 
 
 
 
 
 
 
 
88f2e9d
ef03fc8
 
 
509b18a
ef03fc8
509b18a
ef03fc8
509b18a
ef03fc8
 
 
 
 
 
509b18a
 
 
 
 
 
 
88f2e9d
509b18a
ef03fc8
 
 
 
 
 
 
 
 
509b18a
 
 
88f2e9d
509b18a
88f2e9d
509b18a
 
88f2e9d
509b18a
 
 
 
 
 
 
 
88f2e9d
509b18a
 
88f2e9d
 
 
509b18a
 
 
 
 
 
 
 
 
 
 
 
 
 
88f2e9d
509b18a
 
88f2e9d
509b18a
 
 
 
88f2e9d
509b18a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250d6ba
 
 
 
 
 
 
 
 
 
 
ef03fc8
88f2e9d
f3034bd
 
 
 
 
 
509b18a
 
 
ef03fc8
509b18a
 
 
 
 
ef03fc8
 
 
 
 
509b18a
 
 
 
 
250d6ba
 
 
 
88f2e9d
250d6ba
509b18a
250d6ba
 
 
 
 
 
 
 
 
88f2e9d
250d6ba
88f2e9d
 
 
 
 
 
 
 
 
 
 
 
 
250d6ba
88f2e9d
250d6ba
88f2e9d
250d6ba
88f2e9d
250d6ba
 
 
 
88f2e9d
 
250d6ba
ef03fc8
 
 
88f2e9d
ef03fc8
88f2e9d
250d6ba
 
 
88f2e9d
 
ef03fc8
509b18a
ef03fc8
88f2e9d
51b03b4
250d6ba
88f2e9d
250d6ba
 
 
 
88f2e9d
250d6ba
 
ef03fc8
250d6ba
88f2e9d
250d6ba
 
 
 
 
88f2e9d
 
ef03fc8
509b18a
250d6ba
88f2e9d
250d6ba
 
 
 
 
88f2e9d
250d6ba
 
 
 
 
 
 
 
 
 
 
 
 
 
88f2e9d
250d6ba
 
 
88f2e9d
250d6ba
 
 
 
ef03fc8
44c07a4
509b18a
ef03fc8
51b03b4
f3034bd
 
250d6ba
51b03b4
ef03fc8
51b03b4
250d6ba
 
88f2e9d
 
 
 
 
 
 
 
250d6ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8397456
 
c4683fa
250d6ba
51b03b4
250d6ba
 
88f2e9d
 
 
 
ef03fc8
51b03b4
88f2e9d
51b03b4
 
250d6ba
51b03b4
 
 
 
ef03fc8
88f2e9d
ef03fc8
 
51b03b4
250d6ba
 
88f2e9d
 
250d6ba
51b03b4
 
 
 
 
88f2e9d
250d6ba
 
88f2e9d
 
250d6ba
 
 
 
 
 
88f2e9d
250d6ba
51b03b4
 
88f2e9d
 
 
 
 
 
 
 
 
 
 
509b18a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import numpy as np
import gradio as gr
import pickle
import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import tempfile
import os

# Split the styling into two separate functions for clarity and simplicity
def style_feasible_column(val):
    """Style for the Feasible? column"""
    if val == 'Success':
        return 'color:white;background-color: lightgreen'
    elif val == 'Failed':
        return 'color:white;background-color: lightcoral'
    return ''

def style_size_column(val, target_size=3.0):
    """Style for the Size column based on proximity to target"""
    try:
        val_float = float(val)
        
        distance = val_float - target_size  # Signed distance from target
        abs_distance = abs(distance)
        
        # Calculate width percentage based on distance
        max_distance = 2.5
        width_pct = 100 - min(abs_distance / max_distance * 100, 100)
        
        # Determine color based on value position relative to target
        if distance < 0:
            color = f"rgba(0, 128, 128, {min(1.0, 0.4 + 0.6*(1-abs_distance/max_distance))})"  # Teal for below
        else:
            color = f"rgba(230, 97, 0, {min(1.0, 0.4 + 0.6*(1-abs_distance/max_distance))})"  # Orange for above
        
        # Text styling based on proximity to target
        if abs_distance > 3:
            text_color = "grey"
        elif abs_distance > 1:
            text_color = "black"
        else:
            text_color = "white"
            
        font_weight = "bold" if abs_distance < 0.5 else "normal"
        
        # Create gradient style
        return (
            f"background: linear-gradient(90deg, {color} {width_pct}%, transparent {width_pct}%); "
            f"color: {text_color}; "
            f"font-weight: {font_weight}; "
        )
    except (ValueError, TypeError):
        return ''

# Simulation function for electrospraying
def sim_espray_constrained(x, noise_se=None):
    # Ensure x is a numpy array with float data type
    x = np.array(x, dtype=float)
    
    # Ensure x is a 2D array
    if x.ndim == 1:
        x = x.reshape(1, -1)
        
    # Define the equations
    conc = x[:, 0]
    flow_rate = x[:, 1]
    voltage = x[:, 2]
    solvent = x[:, 3]
    diameter = (np.sqrt(conc) * np.sqrt(flow_rate)) / np.log2(voltage) * 10 + 0.4 + solvent  # Diameter in micrometers
    if noise_se is not None:
        diameter = diameter + noise_se * np.random.randn(*diameter.shape)
    exp_con = (np.log(flow_rate) * (solvent - 0.5) + 1.40 >= 0).astype(float)
    return np.column_stack((diameter, exp_con))

# Initialize experiment data
X_init = np.array([[0.5, 15, 10, 0],
                   [0.5, 0.1, 10, 1],
                   [3, 20, 15, 0],
                   [1, 20, 10, 1],
                   [0.2, 0.02, 10, 1]])

Y_init = sim_espray_constrained(X_init)
exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent'])
exp_record_df['Size (um)'] = Y_init[:, 0]
exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']]
exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]]

# Replace the static prior_experiments_display with a function
def generate_prior_experiments_display(target_size=3.0):
    """Generate styled prior experiments display based on target size"""
    return exp_record_df.style\
        .map(style_feasible_column, subset=['Feasible?'])\
        .map(lambda x: style_size_column(x, target_size), subset=['Size (um)'])\
        .format(precision=3)


# Functions for data processing and visualization
def import_results(target_size=3):
    strategies = ['qEI', 'qEI_vi_mixed_con', 'qEICF_vi_mixed_con', 'rnd']
    file_name_dict = {
        '0.5': 'best_distances_0_5.pkl',
        '3': 'best_distances_3_0.pkl',
        '22': 'best_distances_22_0.pkl'
    }
    # Load results from pickle file based on target size
    with open(file_name_dict[str(target_size)], 'rb') as f:
        best_distances = pickle.load(f)

    # vstack all values in best_distances
    best_distances_vstack = {k: np.vstack(best_distances[k]) for k in strategies}
    best_distances_all_trials = -np.vstack([best_distances_vstack[k] for k in strategies])
    best_distances_all_trials_df = pd.DataFrame(best_distances_all_trials)
    best_distances_all_trials_df['strategy'] = np.repeat(['Vanilla BO', 'Constrained BO', 'CCBO', 'Random'], 20)
    best_distances_all_trials_df['trial'] = list(range(20)) * len(strategies)

    best_distances_df_long = pd.melt(best_distances_all_trials_df, id_vars=['strategy', 'trial'], var_name='iteration', value_name='regret')
    return best_distances_df_long

def calc_human_performance(df, target_size=3.0):
    # Make a copy of the dataframe to avoid modifying the original
    df_copy = df.copy()
    
    # convert back solvent to 0 and 1
    df_copy['Solvent'] = [0 if x == 'DMAc' else 1 for x in df_copy['Solvent']]
    
    ROUNDS = len(df_copy) // 2

    # Ensure all values are numeric
    numeric_cols = ['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent']
    for col in numeric_cols:
        df_copy[col] = pd.to_numeric(df_copy[col])
    
    X_human = df_copy[numeric_cols].values

    X_human_init = X_init.copy()
    Y_human_init = Y_init.copy()
    
    best_human_distance = []

    for iter in range(ROUNDS + 1):
        Y_distance = -np.abs(Y_human_init[:, 0] - target_size)
        best_human_distance.append(np.ma.masked_array(Y_distance, mask=~Y_human_init[:, 1].astype(bool)).max())
        
        # Check if we have more data for this iteration
        if 2 * iter < len(X_human):
            # Get the slice of new experiments
            new_x = X_human[2 * iter:min(2 * (iter + 1), len(X_human))]
            
            # Add the new experiments to our dataset
            X_human_init = np.vstack([X_human_init, new_x])
            Y_human_init = np.vstack([Y_human_init, sim_espray_constrained(new_x)])

    return -np.array(best_human_distance)

def plot_results(exp_data_df, target_size=3.0):
    # Extract human performance
    best_human_distance = calc_human_performance(exp_data_df, target_size)
    
    # Import results
    best_distances_df_long = import_results(target_size)
    
    fig = go.Figure()
    
    strategies = best_distances_df_long['strategy'].unique()
    
    for strategy in strategies:
        strategy_data = best_distances_df_long[best_distances_df_long['strategy'] == strategy]
        
        # Calculate mean and standard error
        mean_regret = strategy_data.groupby('iteration')['regret'].mean()
        std_regret = strategy_data.groupby('iteration')['regret'].std()
        # Calculate standard error (SE = SD/√n)
        n_trials = strategy_data.groupby('iteration')['regret'].count()
        se_regret = std_regret / np.sqrt(n_trials)
        
        iterations = mean_regret.index
        color = px.colors.qualitative.Set2[strategies.tolist().index(strategy)]
        
        # Add trace for mean line
        mean_trace = go.Scatter(
            x=iterations,
            y=mean_regret,
            mode='lines',
            name=strategy,
            line=dict(width=2, color=color)
        )
        fig.add_trace(mean_trace)
        
        # Add trace for shaded area (standard error)
        fig.add_trace(go.Scatter(
            x=list(iterations) + list(iterations[::-1]),
            y=list(mean_regret + se_regret) + list((mean_regret - se_regret)[::-1]),
            fill='toself',
            fillcolor=mean_trace.line.color.replace('rgb', 'rgba').replace(')', ',0.2)'),
            line=dict(color='rgba(255,255,255,0)'),
            showlegend=False,
            name=f'{strategy} (standard error)'
        ))
    # Add trace for human performance
    fig.add_trace(go.Scatter(
        x=list(range(len(best_human_distance))),
        y=best_human_distance,
        mode='lines+markers',
        name='Human',
        line=dict(width=2, color='brown')
    ))

    fig.update_layout(
        title='Performance Comparison',
        xaxis_title='Iteration',
        yaxis_title='Regret (μm)',
        legend_title='Strategy',
        template='plotly_white',
        legend=dict(
            x=0.01,
            y=0.01,
            bgcolor='rgba(255, 255, 255, 0.5)',
            bordercolor='rgba(0, 0, 0, 0.5)',
            borderwidth=1
        )
    )
    
    return fig

# Add function to calculate AUC
def calculate_auc(human_performance_values):
    """Calculate the Area Under the Curve for a user's performance"""
    # Simple trapezoidal integration
    if len(human_performance_values) <= 1:
        return 0
    
    # AUC calculation using trapezoidal rule
    auc_value = np.trapezoid(human_performance_values, dx=1)
    return round(auc_value, 4)

# Prediction function - simplified signature by removing unnecessary text params
def predict(state, target_size, conc1, flow_rate1, voltage1, solvent1, conc2, flow_rate2, voltage2, solvent2):
    # Get current results storage from state or initialize if None
    if state is None:
        results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
    else:
        results_storage = state.copy()
        
    solvent_value1 = 0 if solvent1 == 'DMAc' else 1
    solvent_value2 = 0 if solvent2 == 'DMAc' else 1
    
    # Process inputs and get predictions
    inputs1 = np.array([[conc1, flow_rate1, voltage1, solvent_value1]])
    inputs2 = np.array([[conc2, flow_rate2, voltage2, solvent_value2]])
    results1 = sim_espray_constrained(inputs1)
    results2 = sim_espray_constrained(inputs2)
    
    # Format and store results
    results_df = pd.DataFrame([
        [conc1, flow_rate1, voltage1, solvent_value1, results1[0, 0], results1[0, 1]],
        [conc2, flow_rate2, voltage2, solvent_value2, results2[0, 0], results2[0, 1]]
    ], columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])

    results_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in results_df['Solvent']]
    results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']]
    
    results_storage = pd.concat([results_storage, results_df], ignore_index=True)
    
    # Apply each styling function to its specific column
    results_display = results_storage.style\
        .map(style_feasible_column, subset=['Feasible?'])\
        .map(lambda x: style_size_column(x, target_size), subset=['Size (um)'])\
        .format(precision=3)
   
    # Check if user has completed 5 rounds (10 experiments)
    completed = len(results_storage) >= 10

    message = ""
    auc_value = 0
    usr_level = ""
    
    if completed:
        # Calculate AUC
        human_performance = calc_human_performance(results_storage, target_size)
        auc_value = calculate_auc(human_performance)

        # Set CCBO value based on target size
        if target_size == 3.0:
            ccbo_value = 1.40
        elif target_size == 0.5:
            ccbo_value = 0.92
        else:
            ccbo_value = 8.51
        
        # Calculate performance as a percentage of CCBO value
        performance_percentage = (auc_value / ccbo_value) * 100

        if performance_percentage > 300:
            usr_level = "randomly playing!"
        elif performance_percentage > 150:
            usr_level = "a beginner."
        elif performance_percentage > 100:
            usr_level = "an intermediate user."
        elif performance_percentage > 65:
            usr_level = "an advanced user."
        else:
            usr_level = "... come on, you must have cheated (or you are extremely lucky)!"


        message = f"🎉 Congratulations! You've completed all 5 rounds. Your performance AUC is ** {auc_value:.2f} ** and CCBO was ** {ccbo_value} **. You seems to be {usr_level} Now you can download your results or click reset to try again!"
    
    # Return updated state and UI updates
    return (
        results_storage, 
        gr.DataFrame(value=generate_prior_experiments_display(target_size), label="Prior Experiments"),
        gr.DataFrame(value=results_display, label="Your Results"), 
        plot_results(results_storage, target_size),
        gr.update(visible=completed),  # Show download button when completed
        gr.update(value=message, visible=completed),  # Show message when completed
        gr.update(value=auc_value),  # Update AUC value
        gr.update(visible=completed),  # Show result file component
        gr.update(interactive=False if completed else True)  # Disable target selection once completed
    )

# Reset results function
def reset_results(state, target_size):
    results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
    # Generate the plot for empty results
    empty_plot = plot_results(results_storage, target_size)
    
    # Apply each styling function to its specific column
    styled_results = results_storage.style\
        .map(style_feasible_column, subset=['Feasible?'])\
        .map(lambda x: style_size_column(x, target_size), subset=['Size (um)'])\
        .format(precision=3)
    
    return (
        results_storage,  # results_state 
        gr.DataFrame(value=generate_prior_experiments_display(target_size), label="Prior Experiments"),  # prior_experiments
        gr.DataFrame(value=styled_results, label="Your Results"),  # results_df
        empty_plot,  # perf_plot
        gr.update(visible=False),  # download_btn visibility
        gr.update(value="", visible=False),  # completion_message
        gr.update(value=0),  # auc_state
        gr.update(visible=False),  # result_file visibility
        gr.update(interactive=True)  # Enable target selection
    )

# Function to prepare results for download
def prepare_results_for_download(results, target_size):
    """Prepare results dataframe for download and save to CSV"""
    if results is None or len(results) == 0:
        return None
    
    # Calculate human performance
    human_performance = calc_human_performance(results, target_size)
    auc_value = calculate_auc(human_performance)
    
    # Add a summary row with AUC
    summary_df = pd.DataFrame({
        'Concentration (%w/v)': ["Performance AUC:"],
        'Flow Rate (mL/h)': [auc_value],
        'Voltage (kV)': [""],
        'Solvent': [""],
        'Size (um)': [""],
        'Feasible?': [""]
    })
    
    # Combine results with summary
    combined_df = pd.concat([results, summary_df], ignore_index=True)
    combined_df = pd.concat([pd.DataFrame([{"Concentration (%w/v)": f"Target size: {target_size} μm"}]), combined_df], ignore_index=True)
    
    # Save to temporary file
    temp_dir = tempfile.gettempdir()
    output_path = os.path.join(temp_dir, f"electrospray_results_{str(target_size).replace('.', '_')}.csv")
    combined_df.to_csv(output_path, index=False)
    
    return output_path

# Application description
description = "<h3>Welcome, challenger! 🎉</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray!</p><p> Rules are simple:</p> <ul><li>🔍 Examine! Prior experiments are on the right (or below on your phone), always remeber the target you've selected! </li><li>⚠️ Be aware! Experiment may <u><i><strong>fail</strong></i></u> due to incompatible parameters, they don't count towards your optimization!</li><li>💡 Propose! Set your parameters, you have <strong>2</strong> chances in each round, use them wisely!</li><li>🚀  <strong>Submit</strong> to see the results, reflect and improve your selection!</li><li>🔄 Repeat! Run the process for <strong>5</strong> rounds to see if you can beat CCBO!</li></ul></p><p>Your data will not be stored, so feel free to play again, good luck! 🍀</p><p>Impressed by CCBO? Check our <a href='https://github.com/FrankWanger/CCBO'>implementation</a> and <a href='https://arxiv.org/abs/2411.10471'>paper!</a></p>"

# Create Gradio interface
with gr.Blocks() as demo:
    # Add state component to store user-specific results
    results_state = gr.State()
    auc_state = gr.State(value=0)
    with gr.Row():
        # Input parameters column
        with gr.Column():
            gr.Markdown("## Human vs CCBO Campaign - Optimize Electrospray")
            gr.Markdown(description)
            
            # Add target size selection with new 22.0 option
            target_size = gr.Radio(
                [3.0, 0.5, 22.0], 
                label="🎯 Select Target Size (μm)", 
                value=3.0,
                info="Choose the particle size you want to optimize for"
            )

            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Experiment 1")
                    conc1 = gr.Slider(minimum=0.05, maximum=5.0, value=1.2, step=0.001, label="Concentration (%w/v)")
                    flow_rate1 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
                    voltage1 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
                    solvent1 = gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent')
                with gr.Column():
                    gr.Markdown("### Experiment 2")
                    conc2 = gr.Slider(minimum=0.05, maximum=5.0, value=2.8, step=0.001, label="Concentration (%w/v)")
                    flow_rate2 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
                    voltage2 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
                    solvent2 = gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent')
            
            # Group all buttons in a single row
            with gr.Row():
                #make submit btn highlight color
                submit_btn = gr.Button("🚀 Submit", variant="primary")
                reset_btn = gr.Button("Reset")
                download_btn = gr.Button("📥 Download Results", visible=False)
            
            # Add notification component (initially hidden)
            completion_message = gr.Markdown(visible=False)
            
            # File output component 
            result_file = gr.File(label="Download Results CSV", visible=False)
            
        # Results display column
        with gr.Column():
            prior_experiments = gr.DataFrame(value=generate_prior_experiments_display(target_size), label="Prior Experiments")
            results_df = gr.DataFrame(label="Your Results")
            perf_plot = gr.Plot(label="Performance Comparison")

    # Connect the submit button to the predict function
    submit_btn.click(
        fn=predict,
        inputs=[
            results_state, 
            target_size,
            conc1, flow_rate1, voltage1, solvent1,
            conc2, flow_rate2, voltage2, solvent2
        ],
        outputs=[
            results_state, prior_experiments, results_df, perf_plot, 
            download_btn, completion_message, auc_state, result_file,
            target_size
        ]
    )
    
    # Connect the reset button to the reset_results function
    reset_btn.click(
        fn=reset_results,
        inputs=[results_state, target_size],
        outputs=[
            results_state, prior_experiments, results_df, perf_plot, 
            download_btn, completion_message, auc_state, result_file,
            target_size
        ]
    )
    
    # Connect download button to file download
    download_btn.click(
        fn=prepare_results_for_download,
        inputs=[results_state, target_size],
        outputs=[result_file]
    )

    # When target size changes, reset the application
    target_size.change(
        fn=reset_results,
        inputs=[results_state, target_size],
        outputs=[
            results_state, prior_experiments, results_df, perf_plot, 
            download_btn, completion_message, auc_state, result_file,
            target_size
        ]
    )

demo.launch()