Spaces:
Running
Running
Commit
·
250d6ba
1
Parent(s):
ef03fc8
updated ui and download options
Browse files
app.py
CHANGED
@@ -4,11 +4,54 @@ import pickle
|
|
4 |
import plotly.graph_objects as go
|
5 |
import plotly.express as px
|
6 |
import pandas as pd
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
def
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Simulation function for electrospraying
|
14 |
def sim_espray_constrained(x, noise_se=None):
|
@@ -42,7 +85,12 @@ exp_record_df = pd.DataFrame(X_init, columns=['Concentration (%w/v)', 'Flow Rate
|
|
42 |
exp_record_df['Size (um)'] = Y_init[:, 0]
|
43 |
exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']]
|
44 |
exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]]
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
# Functions for data processing and visualization
|
48 |
def import_results():
|
@@ -166,6 +214,17 @@ def plot_results(exp_data_df):
|
|
166 |
|
167 |
return fig
|
168 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
# Prediction function - simplified signature by removing unnecessary text params
|
170 |
def predict(state, conc1, flow_rate1, voltage1, solvent1, conc2, flow_rate2, voltage2, solvent2):
|
171 |
# Get current results storage from state or initialize if None
|
@@ -193,63 +252,149 @@ def predict(state, conc1, flow_rate1, voltage1, solvent1, conc2, flow_rate2, vol
|
|
193 |
results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']]
|
194 |
|
195 |
results_storage = pd.concat([results_storage, results_df], ignore_index=True)
|
196 |
-
|
|
|
|
|
|
|
|
|
|
|
197 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
# Return updated state and UI updates
|
199 |
return (
|
200 |
results_storage,
|
201 |
gr.DataFrame(value=prior_experiments_display, label="Prior Experiments"),
|
202 |
gr.DataFrame(value=results_display, label="Your Results"),
|
203 |
-
plot_results(results_storage)
|
|
|
|
|
|
|
|
|
204 |
)
|
205 |
|
206 |
# Reset results function
|
207 |
def reset_results(state):
|
208 |
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
return (
|
210 |
-
results_storage,
|
211 |
-
gr.DataFrame(value=prior_experiments_display, label="Prior Experiments"),
|
212 |
-
gr.DataFrame(value=
|
213 |
-
|
|
|
|
|
|
|
|
|
214 |
)
|
215 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
# Application description
|
217 |
description = "<h3>Welcome, challenger!</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray! Rules are simple: <ul><li>Examine carefully the initial experiments you have on the right (or below if you're using your phone), remember, your target size is <u><i><strong>3.000 um</strong></i></u> ----></li><li>Select your parameters, you have <strong>2</strong> experiments (chances) in each round, use them wisely! </li><li>Click <strong>Submit</strong> to see the results, reflect and improve your selection!</li><li>Repeat the process for <strong>5</strong> rounds to see if you can beat CCBO!</li></ul></p><p>Your data will not be stored, so feel free to play again, good luck!</p>"
|
218 |
|
219 |
# Create Gradio interface
|
220 |
with gr.Blocks() as demo:
|
221 |
-
gr.Markdown("## Human vs CCBO Campaign - Optimize Electrospray")
|
222 |
-
gr.Markdown(description)
|
223 |
-
|
224 |
# Add state component to store user-specific results
|
225 |
results_state = gr.State()
|
226 |
-
|
227 |
with gr.Row():
|
228 |
# Input parameters column
|
229 |
with gr.Column():
|
230 |
-
gr.Markdown("
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
|
236 |
-
|
237 |
-
|
238 |
-
flow_rate2 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
|
239 |
-
voltage2 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
|
240 |
-
solvent2 = gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent')
|
241 |
|
242 |
# Results display column
|
243 |
with gr.Column():
|
244 |
prior_experiments = gr.DataFrame(value=prior_experiments_display, label="Prior Experiments")
|
245 |
results_df = gr.DataFrame(label="Your Results")
|
246 |
perf_plot = gr.Plot(label="Performance Comparison")
|
247 |
-
|
248 |
-
# Action buttons
|
249 |
-
with gr.Row():
|
250 |
-
submit_btn = gr.Button("Submit")
|
251 |
-
reset_btn = gr.Button("Reset Results")
|
252 |
-
|
253 |
# Connect the submit button to the predict function
|
254 |
submit_btn.click(
|
255 |
fn=predict,
|
@@ -258,14 +403,27 @@ with gr.Blocks() as demo:
|
|
258 |
conc1, flow_rate1, voltage1, solvent1,
|
259 |
conc2, flow_rate2, voltage2, solvent2
|
260 |
],
|
261 |
-
outputs=[
|
|
|
|
|
|
|
262 |
)
|
263 |
|
264 |
# Connect the reset button to the reset_results function
|
265 |
reset_btn.click(
|
266 |
fn=reset_results,
|
267 |
inputs=[results_state],
|
268 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
)
|
270 |
|
271 |
demo.launch()
|
|
|
4 |
import plotly.graph_objects as go
|
5 |
import plotly.express as px
|
6 |
import pandas as pd
|
7 |
+
import tempfile
|
8 |
+
import os
|
9 |
|
10 |
+
# Split the styling into two separate functions for clarity and simplicity
|
11 |
+
def style_feasible_column(val):
|
12 |
+
"""Style for the Feasible? column"""
|
13 |
+
if val == 'Success':
|
14 |
+
return 'color:white;background-color: lightgreen'
|
15 |
+
elif val == 'Failed':
|
16 |
+
return 'color:white;background-color: lightcoral'
|
17 |
+
return ''
|
18 |
+
|
19 |
+
def style_size_column(val):
|
20 |
+
"""Style for the Size column based on proximity to target"""
|
21 |
+
try:
|
22 |
+
val_float = float(val)
|
23 |
+
|
24 |
+
distance = val_float - 3.0 # Signed distance from target
|
25 |
+
abs_distance = abs(distance)
|
26 |
+
|
27 |
+
# Calculate width percentage based on distance
|
28 |
+
max_distance = 2.5
|
29 |
+
width_pct = 100 - min(abs_distance / max_distance * 100, 100)
|
30 |
+
|
31 |
+
# Determine color based on value position relative to target
|
32 |
+
if distance < 0:
|
33 |
+
color = f"rgba(0, 128, 128, {min(1.0, 0.4 + 0.6*(1-abs_distance/max_distance))})" # Teal for below
|
34 |
+
else:
|
35 |
+
color = f"rgba(230, 97, 0, {min(1.0, 0.4 + 0.6*(1-abs_distance/max_distance))})" # Orange for above
|
36 |
+
|
37 |
+
# Text styling based on proximity to target
|
38 |
+
if abs_distance > 3:
|
39 |
+
text_color = "grey"
|
40 |
+
elif abs_distance > 1:
|
41 |
+
text_color = "black"
|
42 |
+
else:
|
43 |
+
text_color = "white"
|
44 |
+
|
45 |
+
font_weight = "bold" if abs_distance < 0.5 else "normal"
|
46 |
+
|
47 |
+
# Create gradient style
|
48 |
+
return (
|
49 |
+
f"background: linear-gradient(90deg, {color} {width_pct}%, transparent {width_pct}%); "
|
50 |
+
f"color: {text_color}; "
|
51 |
+
f"font-weight: {font_weight}; "
|
52 |
+
)
|
53 |
+
except (ValueError, TypeError):
|
54 |
+
return ''
|
55 |
|
56 |
# Simulation function for electrospraying
|
57 |
def sim_espray_constrained(x, noise_se=None):
|
|
|
85 |
exp_record_df['Size (um)'] = Y_init[:, 0]
|
86 |
exp_record_df['Solvent'] = ['DMAc' if x == 0 else 'CHCl3' for x in exp_record_df['Solvent']]
|
87 |
exp_record_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in Y_init[:, 1]]
|
88 |
+
|
89 |
+
# Apply each styling function to its specific column
|
90 |
+
prior_experiments_display = exp_record_df.style\
|
91 |
+
.map(style_feasible_column, subset=['Feasible?'])\
|
92 |
+
.map(style_size_column, subset=['Size (um)'])\
|
93 |
+
.format(precision=3)
|
94 |
|
95 |
# Functions for data processing and visualization
|
96 |
def import_results():
|
|
|
214 |
|
215 |
return fig
|
216 |
|
217 |
+
# Add function to calculate AUC
|
218 |
+
def calculate_auc(human_performance_values):
|
219 |
+
"""Calculate the Area Under the Curve for a user's performance"""
|
220 |
+
# Simple trapezoidal integration
|
221 |
+
if len(human_performance_values) <= 1:
|
222 |
+
return 0
|
223 |
+
|
224 |
+
# AUC calculation using trapezoidal rule
|
225 |
+
auc_value = np.trapezoid(human_performance_values, dx=1)
|
226 |
+
return round(auc_value, 4)
|
227 |
+
|
228 |
# Prediction function - simplified signature by removing unnecessary text params
|
229 |
def predict(state, conc1, flow_rate1, voltage1, solvent1, conc2, flow_rate2, voltage2, solvent2):
|
230 |
# Get current results storage from state or initialize if None
|
|
|
252 |
results_df['Feasible?'] = ['Success' if x == 1 else 'Failed' for x in results_df['Feasible?']]
|
253 |
|
254 |
results_storage = pd.concat([results_storage, results_df], ignore_index=True)
|
255 |
+
|
256 |
+
# Apply each styling function to its specific column
|
257 |
+
results_display = results_storage.style\
|
258 |
+
.map(style_feasible_column, subset=['Feasible?'])\
|
259 |
+
.map(style_size_column, subset=['Size (um)'])\
|
260 |
+
.format(precision=3)
|
261 |
|
262 |
+
# Check if user has completed 5 rounds (10 experiments)
|
263 |
+
completed = len(results_storage) >= 10
|
264 |
+
|
265 |
+
message = ""
|
266 |
+
auc_value = 0
|
267 |
+
usr_level = ""
|
268 |
+
|
269 |
+
if completed:
|
270 |
+
# Calculate AUC
|
271 |
+
human_performance = calc_human_performance(results_storage)
|
272 |
+
auc_value = calculate_auc(human_performance)
|
273 |
+
# beginner = 2.62, intermediate = 1.60, expert = 1.03
|
274 |
+
if auc_value > 4.10:
|
275 |
+
usr_level = "randomly playing!"
|
276 |
+
elif auc_value > 1.80:
|
277 |
+
usr_level = "a beginner."
|
278 |
+
elif auc_value > 1.30:
|
279 |
+
usr_level = "an intermediate user."
|
280 |
+
elif auc_value > 0.60:
|
281 |
+
usr_level = "an advanced user."
|
282 |
+
else:
|
283 |
+
usr_level = "... come on, you must have cheated (or you are extremely lucky)!"
|
284 |
+
|
285 |
+
message = f"🎉 Congratulations! You've completed all 5 rounds.\nYour performance AUC is ** {auc_value:.2f} ** and CCBO was ** 1.40 **.\nYou seems to be {usr_level}\nNow you can download your results or try again!"
|
286 |
+
|
287 |
# Return updated state and UI updates
|
288 |
return (
|
289 |
results_storage,
|
290 |
gr.DataFrame(value=prior_experiments_display, label="Prior Experiments"),
|
291 |
gr.DataFrame(value=results_display, label="Your Results"),
|
292 |
+
plot_results(results_storage),
|
293 |
+
gr.update(visible=completed), # Show download button when completed
|
294 |
+
gr.update(value=message, visible=completed), # Show message when completed
|
295 |
+
gr.update(value=auc_value), # Update AUC value
|
296 |
+
gr.update(visible=completed) # Show result file component
|
297 |
)
|
298 |
|
299 |
# Reset results function
|
300 |
def reset_results(state):
|
301 |
results_storage = pd.DataFrame(columns=['Concentration (%w/v)', 'Flow Rate (mL/h)', 'Voltage (kV)', 'Solvent', 'Size (um)', 'Feasible?'])
|
302 |
+
# Generate the plot for empty results
|
303 |
+
empty_plot = plot_results(results_storage)
|
304 |
+
|
305 |
+
# Apply each styling function to its specific column
|
306 |
+
styled_results = results_storage.style\
|
307 |
+
.map(style_feasible_column, subset=['Feasible?'])\
|
308 |
+
.map(style_size_column, subset=['Size (um)'])\
|
309 |
+
.format(precision=3)
|
310 |
+
|
311 |
return (
|
312 |
+
results_storage, # results_state
|
313 |
+
gr.DataFrame(value=prior_experiments_display, label="Prior Experiments"), # prior_experiments
|
314 |
+
gr.DataFrame(value=styled_results, label="Your Results"), # results_df
|
315 |
+
empty_plot, # perf_plot
|
316 |
+
gr.update(visible=False), # download_btn visibility
|
317 |
+
gr.update(value="", visible=False), # completion_message
|
318 |
+
gr.update(value=0), # auc_state
|
319 |
+
gr.update(visible=False) # result_file visibility
|
320 |
)
|
321 |
|
322 |
+
# Function to prepare results for download
|
323 |
+
def prepare_results_for_download(results):
|
324 |
+
"""Prepare results dataframe for download and save to CSV"""
|
325 |
+
if results is None or len(results) == 0:
|
326 |
+
return None
|
327 |
+
|
328 |
+
# Calculate human performance
|
329 |
+
human_performance = calc_human_performance(results)
|
330 |
+
auc_value = calculate_auc(human_performance)
|
331 |
+
|
332 |
+
# Add a summary row with AUC
|
333 |
+
summary_df = pd.DataFrame({
|
334 |
+
'Concentration (%w/v)': ["Performance AUC:"],
|
335 |
+
'Flow Rate (mL/h)': [auc_value],
|
336 |
+
'Voltage (kV)': [""],
|
337 |
+
'Solvent': [""],
|
338 |
+
'Size (um)': [""],
|
339 |
+
'Feasible?': [""]
|
340 |
+
})
|
341 |
+
|
342 |
+
# Combine results with summary
|
343 |
+
combined_df = pd.concat([results, summary_df], ignore_index=True)
|
344 |
+
|
345 |
+
# Save to temporary file
|
346 |
+
temp_dir = tempfile.gettempdir()
|
347 |
+
output_path = os.path.join(temp_dir, "electrospray_results.csv")
|
348 |
+
combined_df.to_csv(output_path, index=False)
|
349 |
+
|
350 |
+
return output_path
|
351 |
+
|
352 |
# Application description
|
353 |
description = "<h3>Welcome, challenger!</h3><p> If you think you may perform better than <strong>CCBO</strong>, try this interactive game to optimize electrospray! Rules are simple: <ul><li>Examine carefully the initial experiments you have on the right (or below if you're using your phone), remember, your target size is <u><i><strong>3.000 um</strong></i></u> ----></li><li>Select your parameters, you have <strong>2</strong> experiments (chances) in each round, use them wisely! </li><li>Click <strong>Submit</strong> to see the results, reflect and improve your selection!</li><li>Repeat the process for <strong>5</strong> rounds to see if you can beat CCBO!</li></ul></p><p>Your data will not be stored, so feel free to play again, good luck!</p>"
|
354 |
|
355 |
# Create Gradio interface
|
356 |
with gr.Blocks() as demo:
|
|
|
|
|
|
|
357 |
# Add state component to store user-specific results
|
358 |
results_state = gr.State()
|
359 |
+
auc_state = gr.State(value=0)
|
360 |
with gr.Row():
|
361 |
# Input parameters column
|
362 |
with gr.Column():
|
363 |
+
gr.Markdown("## Human vs CCBO Campaign - Optimize Electrospray")
|
364 |
+
gr.Markdown(description)
|
365 |
+
|
366 |
+
with gr.Row():
|
367 |
+
with gr.Column():
|
368 |
+
gr.Markdown("### Experiment 1")
|
369 |
+
conc1 = gr.Slider(minimum=0.05, maximum=5.0, value=1.2, step=0.001, label="Concentration (%w/v)")
|
370 |
+
flow_rate1 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
|
371 |
+
voltage1 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
|
372 |
+
solvent1 = gr.Dropdown(['DMAc', 'CHCl3'], value='DMAc', label='Solvent')
|
373 |
+
with gr.Column():
|
374 |
+
gr.Markdown("### Experiment 2")
|
375 |
+
conc2 = gr.Slider(minimum=0.05, maximum=5.0, value=2.8, step=0.001, label="Concentration (%w/v)")
|
376 |
+
flow_rate2 = gr.Slider(minimum=0.01, maximum=60.0, value=20.0, step=0.001, label="Flow Rate (mL/h)")
|
377 |
+
voltage2 = gr.Slider(minimum=10.0, maximum=18.0, value=15.0, step=0.001, label="Voltage (kV)")
|
378 |
+
solvent2 = gr.Dropdown(['DMAc', 'CHCl3'], value='CHCl3', label='Solvent')
|
379 |
+
|
380 |
+
# Group all buttons in a single row
|
381 |
+
with gr.Row():
|
382 |
+
submit_btn = gr.Button("Submit")
|
383 |
+
reset_btn = gr.Button("Reset Results")
|
384 |
+
download_btn = gr.Button("📥 Download Results", visible=False)
|
385 |
+
|
386 |
+
# Moved file output component below the buttons
|
387 |
+
result_file = gr.File(label="Download Results CSV", visible=False)
|
388 |
|
389 |
+
# Add notification component (initially hidden)
|
390 |
+
completion_message = gr.Markdown(visible=False)
|
|
|
|
|
|
|
391 |
|
392 |
# Results display column
|
393 |
with gr.Column():
|
394 |
prior_experiments = gr.DataFrame(value=prior_experiments_display, label="Prior Experiments")
|
395 |
results_df = gr.DataFrame(label="Your Results")
|
396 |
perf_plot = gr.Plot(label="Performance Comparison")
|
397 |
+
|
|
|
|
|
|
|
|
|
|
|
398 |
# Connect the submit button to the predict function
|
399 |
submit_btn.click(
|
400 |
fn=predict,
|
|
|
403 |
conc1, flow_rate1, voltage1, solvent1,
|
404 |
conc2, flow_rate2, voltage2, solvent2
|
405 |
],
|
406 |
+
outputs=[
|
407 |
+
results_state, prior_experiments, results_df, perf_plot,
|
408 |
+
download_btn, completion_message, auc_state, result_file
|
409 |
+
]
|
410 |
)
|
411 |
|
412 |
# Connect the reset button to the reset_results function
|
413 |
reset_btn.click(
|
414 |
fn=reset_results,
|
415 |
inputs=[results_state],
|
416 |
+
outputs=[
|
417 |
+
results_state, prior_experiments, results_df, perf_plot,
|
418 |
+
download_btn, completion_message, auc_state, result_file
|
419 |
+
]
|
420 |
+
)
|
421 |
+
|
422 |
+
# Connect download button to file download
|
423 |
+
download_btn.click(
|
424 |
+
fn=prepare_results_for_download,
|
425 |
+
inputs=[results_state],
|
426 |
+
outputs=[result_file]
|
427 |
)
|
428 |
|
429 |
demo.launch()
|