File size: 30,119 Bytes
339d280
722e552
167fbe8
3e51370
626fdd0
3e51370
 
 
 
 
167fbe8
 
3e51370
 
 
 
 
 
 
 
 
661ab86
 
 
 
 
 
 
 
3e51370
167fbe8
14a7f80
167fbe8
3e51370
d544e6d
167fbe8
 
 
5e425ea
14a7f80
3e51370
 
 
661ab86
 
 
 
 
 
 
14a7f80
661ab86
 
 
 
09c0794
14a7f80
 
 
661ab86
 
 
14a7f80
661ab86
 
14a7f80
 
 
 
661ab86
 
 
 
 
 
14a7f80
661ab86
 
 
14a7f80
661ab86
14a7f80
661ab86
 
09c0794
 
 
 
 
14a7f80
09c0794
 
 
 
 
14a7f80
 
 
09c0794
 
14a7f80
 
 
 
09c0794
 
 
14a7f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09c0794
 
14a7f80
 
 
 
 
 
 
 
 
 
 
 
09c0794
661ab86
 
 
 
 
 
 
14a7f80
661ab86
14a7f80
661ab86
 
 
14a7f80
661ab86
 
14a7f80
661ab86
14a7f80
661ab86
 
14a7f80
09c0794
661ab86
 
14a7f80
661ab86
 
 
 
 
14a7f80
661ab86
09c0794
 
14a7f80
 
661ab86
 
 
14a7f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
661ab86
 
 
 
 
 
 
 
14a7f80
661ab86
 
14a7f80
 
661ab86
3e51370
 
 
661ab86
3e51370
 
 
 
09c0794
661ab86
09c0794
 
 
 
 
 
 
 
 
 
 
661ab86
09c0794
 
 
 
 
 
3e51370
 
661ab86
3e51370
a814910
3e51370
 
 
661ab86
 
09c0794
661ab86
 
3e51370
661ab86
3e51370
 
 
 
 
661ab86
09c0794
661ab86
3e51370
661ab86
3e51370
 
661ab86
3e51370
 
 
 
 
 
 
09c0794
cad6d37
3e51370
 
 
 
cad6d37
 
 
 
 
 
 
 
 
 
 
 
661ab86
3e51370
 
 
 
 
 
 
661ab86
3e51370
626fdd0
661ab86
3e51370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14a7f80
 
 
 
 
 
 
 
 
3e51370
 
 
 
 
 
 
 
09c0794
3e51370
 
 
661ab86
3e51370
cad6d37
661ab86
3e51370
 
 
 
 
 
 
14a7f80
3e51370
14a7f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cad6d37
661ab86
3e51370
 
 
 
a814910
661ab86
3e51370
 
 
a814910
661ab86
3e51370
 
 
661ab86
 
 
14a7f80
661ab86
3e51370
09c0794
3e51370
 
661ab86
 
 
3e51370
 
661ab86
 
09c0794
14a7f80
09c0794
661ab86
3e51370
 
661ab86
3e51370
09c0794
661ab86
09c0794
 
 
 
 
 
 
661ab86
09c0794
 
 
 
 
 
 
3e51370
09c0794
 
 
 
 
 
 
661ab86
09c0794
 
 
 
 
 
 
661ab86
09c0794
661ab86
14a7f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e51370
661ab86
3e51370
661ab86
14a7f80
 
 
 
 
 
 
 
 
 
 
 
 
 
3e51370
661ab86
3e51370
661ab86
3e51370
a814910
3e51370
14a7f80
 
 
 
 
09c0794
 
 
3e51370
 
 
14a7f80
 
 
 
 
09c0794
 
3e51370
09c0794
 
 
 
3e51370
 
09c0794
 
3e51370
09c0794
14a7f80
09c0794
 
 
 
 
661ab86
09c0794
3e51370
661ab86
3e51370
661ab86
3e51370
661ab86
14a7f80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e51370
661ab86
3e51370
 
14a7f80
 
3e51370
661ab86
3e51370
 
 
09c0794
3e51370
14a7f80
661ab86
14a7f80
 
f7822c5
661ab86
 
 
09c0794
661ab86
09c0794
14a7f80
 
 
 
 
 
 
 
 
 
661ab86
 
 
 
14a7f80
661ab86
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
import streamlit as st
import pandas as pd
import numpy as np
import folium
from streamlit_folium import folium_static
import ee
import os
import json
import time
from datetime import datetime, timedelta
import plotly.express as px
import plotly.graph_objects as go
from PIL import Image
import base64
from io import BytesIO
import matplotlib.pyplot as plt
import seaborn as sns
import altair as alt
from streamlit_option_menu import option_menu
from streamlit_lottie import st_lottie
import requests
import hydralit_components as hc
from streamlit_extras.colored_header import colored_header
from streamlit_extras.metric_cards import style_metric_cards
from streamlit_extras.chart_container import chart_container
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_card import card
import pydeck as pdk
import math
from sklearn.linear_model import LinearRegression

# Page configuration
st.set_page_config(
    page_title="سامانه هوشمند پایش مزارع نیشکر دهخدا",
    page_icon="🌿",
    layout="wide",
    initial_sidebar_state="expanded"
)

# Custom CSS with cascading panels and eye-catching reflexes
st.markdown("""
<style>
    @import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@100;200;300;400;500;600;700;800;900&display=swap');
    
    * {
        font-family: 'Vazirmatn', sans-serif !important;
    }
    
    /* Main container styling */
    .main {
        background: linear-gradient(135deg, #f0f4f8 0%, #d9e2ec 100%);
    }
    
    /* Header styling */
    .main-header {
        background: linear-gradient(90deg, #2ecc71 0%, #27ae60 100%);
        padding: 2rem;
        border-radius: 15px;
        box-shadow: 0 10px 30px rgba(0, 0, 0, 0.2);
        margin-bottom: 2rem;
        position: relative;
        overflow: hidden;
        animation: headerPulse 3s infinite ease-in-out;
    }
    
    @keyframes headerPulse {
        0% { box-shadow: 0 10px 30px rgba(46, 204, 113, 0.2); }
        50% { box-shadow: 0 15px 40px rgba(46, 204, 113, 0.4); }
        100% { box-shadow: 0 10px 30px rgba(46, 204, 113, 0.2); }
    }
    
    .main-header h1 {
        color: white;
        font-weight: 700;
        margin: 0;
        text-shadow: 2px 2px 5px rgba(0, 0, 0, 0.2);
    }
    
    .main-header p {
        color: rgba(255, 255, 255, 0.9);
        margin: 0;
        font-size: 1.1rem;
    }
    
    /* Metric card styling */
    .metric-container {
        display: flex;
        justify-content: space-around;
        flex-wrap: wrap;
        gap: 25px;
        padding: 20px;
    }
    
    .metric-card {
        background: linear-gradient(135deg, #3498db 0%, #2980b9 100%);
        border-radius: 20px;
        padding: 25px;
        width: 240px;
        text-align: center;
        color: white;
        box-shadow: 0 10px 25px rgba(0, 0, 0, 0.15);
        transition: all 0.4s ease;
        position: relative;
        overflow: hidden;
    }
    
    .metric-card:hover {
        transform: translateY(-10px) scale(1.05);
        box-shadow: 0 15px 35px rgba(0, 0, 0, 0.25);
    }
    
    .metric-card::before {
        content: '';
        position: absolute;
        top: -50%;
        left: -50%;
        width: 200%;
        height: 200%;
        background: rgba(255, 255, 255, 0.1);
        transform: rotate(30deg);
        transition: all 0.4s ease;
    }
    
    .metric-card:hover::before {
        top: 100%;
        left: 100%;
    }
    
    .metric-icon { font-size: 2.8rem; margin-bottom: 15px; animation: iconBounce 2s infinite; }
    .metric-value { font-size: 2.2rem; font-weight: 700; text-shadow: 1px 1px 3px rgba(0, 0, 0, 0.2); }
    .metric-label { font-size: 1.1rem; opacity: 0.9; }
    
    @keyframes iconBounce {
        0%, 100% { transform: translateY(0); }
        50% { transform: translateY(-10px); }
    }
    
    /* Dropdown menu styling */
    .stSelectbox {
        background: white;
        border-radius: 12px;
        padding: 10px;
        box-shadow: 0 5px 15px rgba(0, 0, 0, 0.1);
        transition: all 0.3s ease;
    }
    
    .stSelectbox:hover {
        box-shadow: 0 8px 20px rgba(0, 0, 0, 0.15);
    }
    
    /* Navigation menu styling */
    .st-emotion-cache-1lcbz7b {
        background-color: transparent !important;
        padding: 0 !important;
        margin-bottom: 20px !important;
    }
    
    .st-emotion-cache-1j7d69d {
        --hover-color: #e9f7ef !important;
        border-radius: 12px !important;
        font-size: 16px !important;
        text-align: center !important;
        margin: 0 !important;
        transition: all 0.3s ease;
    }
    
    .st-emotion-cache-1j7d69d:hover {
        background-color: #e9f7ef !important;
        transform: translateY(-2px);
    }
    
    .st-emotion-cache-1j7d69d[data-selected="true"] {
        background-color: #2ecc71 !important;
        color: white !important;
        font-weight: 600 !important;
        box-shadow: 0 5px 15px rgba(46, 204, 113, 0.3);
    }
    
    /* Button styling */
    .stButton>button {
        border-radius: 50px;
        padding: 0.7rem 2rem;
        font-weight: 600;
        background: linear-gradient(90deg, #2ecc71 0%, #27ae60 100%);
        color: white;
        border: none;
        transition: all 0.3s ease;
    }
    
    .stButton>button:hover {
        transform: translateY(-3px);
        box-shadow: 0 8px 20px rgba(46, 204, 113, 0.3);
    }
    
    /* Tabs styling */
    .stTabs [data-baseweb="tab-list"] {
        gap: 10px;
    }
    
    .stTabs [data-baseweb="tab"] {
        border-radius: 8px 8px 0 0;
        padding: 12px 20px;
        background-color: #f8f9fa;
        transition: all 0.3s ease;
    }
    
    .stTabs [aria-selected="true"] {
        background-color: #2ecc71 !important;
        color: white !important;
        box-shadow: 0 5px 15px rgba(46, 204, 113, 0.2);
    }
    
    /* Footer styling */
    footer {
        position: fixed;
        left: 0;
        bottom: 0;
        width: 100%;
        background: linear-gradient(90deg, #2ecc71 0%, #27ae60 100%);
        color: white;
        text-align: center;
        padding: 15px 0;
        box-shadow: 0 -5px 15px rgba(0, 0, 0, 0.1);
    }
</style>
""", unsafe_allow_html=True)

# Load real farm data from CSV
@st.cache_data
def load_farm_data():
    try:
        df = pd.read_csv("کراپ لاگ کلی (1).csv")
        df.columns = [col.strip() for col in df.columns]
        df.rename(columns={
            'سال': 'Year', 'هفته': 'Week', 'مزرعه': 'Farm_ID', 'کانال': 'Channel', 'اداره': 'Administration',
            'مساحت': 'Area', 'مساحت زیر مجموعه': 'SubArea', 'رقم': 'Variety', 'سن': 'Age',
            'ایستگاه 1': 'Station1', 'ایستگاه 2': 'Station2', 'ایستگاه 3': 'Station3',
            'ایستگاه 4': 'Station4', 'ایستگاه 5': 'Station5', 'ارتفاع هفته جاری مزرعه': 'CurrentHeight',
            'ارتفاع هفته گذشته مزرعه': 'PreviousHeight', 'رشد هفته جاری': 'CurrentGrowth',
            'رشد هفته گذشته': 'PreviousGrowth', 'نیتروژن فعلی': 'CurrentNitrogen',
            'نیتروژن استاندارد فعلی': 'StandardNitrogen', 'نیتروژن قبلی': 'PreviousNitrogen',
            'نیتروژن استاندارد قبلی': 'PreviousStandardNitrogen', 'رطوبت غلاف فعلی': 'CurrentMoisture',
            'رطوبت استاندارد فعلی': 'StandardMoisture', 'رطوبت غلاف قبلی': 'PreviousMoisture',
            'رطوبت استاندارد قبلی': 'PreviousStandardMoisture', 'چاهک 1': 'Well1', 'تاریخ قرائت': 'Well1Date',
            'چاهک 2': 'Well2', 'تاریخ قرائت.1': 'Well2Date'
        }, inplace=True)
        numeric_cols = ['Area', 'CurrentHeight', 'PreviousHeight', 'CurrentGrowth', 'PreviousGrowth', 
                        'CurrentNitrogen', 'PreviousNitrogen', 'CurrentMoisture', 'PreviousMoisture', 
                        'Station1', 'Station2', 'Station3', 'Station4', 'Station5', 'Well1', 'Well2']
        for col in numeric_cols:
            if col in df.columns:
                df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
        return df
    except Exception as e:
        st.error(f"خطا در بارگذاری داده‌های مزارع: {e}")
        return pd.DataFrame()

@st.cache_data
def load_coordinates_data():
    try:
        coords_df = pd.read_csv("farm_coordinates.csv")
        coords_df.rename(columns={
            'مزرعه': 'Farm_ID', 'عرض جغرافیایی': 'Latitude', 'طول جغرافیایی': 'Longitude'
        }, inplace=True)
        return coords_df
    except Exception as e:
        st.error(f"خطا در بارگذاری داده‌های مختصات: {e}")
        return pd.DataFrame()

@st.cache_data
def load_day_data():
    try:
        day_df = pd.read_csv("پایگاه داده (1).csv")
        day_df.rename(columns={'مزرعه': 'Farm_ID', 'روز': 'Day'}, inplace=True)
        return day_df
    except Exception as e:
        st.error(f"خطا در بارگذاری داده‌های روزهای هفته: {e}")
        return pd.DataFrame()

# Load animation JSON
@st.cache_data
def load_lottie_url(url: str):
    r = requests.get(url)
    if r.status_code != 200:
        return None
    return r.json()

# Initialize Earth Engine
@st.cache_resource
def initialize_earth_engine():
    try:
        service_account = 'dehkhodamap-e9f0da4ce9f6514021@ee-esmaeilkiani13877.iam.gserviceaccount.com'
        credentials_dict = {
            "type": "service_account",
            "project_id": "ee-esmaeilkiani13877",
            "private_key_id": "cfdea6eaf4115cb6462626743e4b15df85fd0c7f",
            "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQCjeOvgKi+gWK6k\n2/0RXOA3LAo51DVxA1ja9v0qFOn4FNOStxkwlKvcK8yDQNb53FPORHFIUHvev3y7\niHr/UEUqnn5Rzjbf0k3qWB/fS377/UP4VznMsFpKiHNxCBtaNS8KLk6Rat6Y7Xfm\nJfpSU7ZjYZmVc81M/7iFofGUSJoHYpxhyt3rjp53huxJNNW5e12TFnLkyg1Ja/9X\nGMTt+vjVcO4XhQCIlaGVdSKS2sHlHgzpzE6KtuUKjDMEBqPkWF4xc16YavYltwPd\nqULCu2/t6dczhYL4NEFj8wL+KJqOojfsyoWmzqPFx1Bbxk4BVPk/lslq9+m9p5kq\nSCG0/9W9AgMBAAECggEAEGchw+x3uu8rFv+79PIMzXxtyj+w3RYo5E/EN2TB1VLB\nqAcXT/ibBgyfCMyIxamF/zx+4XKx+zfbnDWlodi8F/qvUiYO+4ZuqwUMras1orNX\nDqQx+If5h2EJtF3L4NFVVwAuggjnLREm5sEIzRn5Qx+X+ZcVEpTWPxJw2yAt1G+3\nk311KqD+zR7jQfchXU4xQQ1ZoHkdAJ/DPGun6x+HUOq7Gus73A6IzLp12ZoiHN3n\nkY+lG8cMs039QAe/OhZFEo5I9cNSaI688HmsLRivZ26WoPEnwcN0MHQGtXqGmMUI\nCcpgJqllqdWMuBlYcpSadn7rZzPujSlzIxkvieLeAQKBgQDNTYUWZdGbA2sHcBpJ\nrqKwDYF/AwZtjx+hXHVBRbR6DJ1bO2P9n51ioTMP/H9K61OBAMZ7w71xJ2I+9Snv\ncYumPWoiUwiOhTh3O7nYz6mR7sK0HuUCZfYdaxJVnLgNCgj+w9AxYnkzOyL9/QvJ\nknrlMKf4H59NbapBqy5spilq1QKBgQDL1wkGHhoTuLb5Xp3X3CX4S7WMke4T01bO\nPpMmlewVgH5lK5wTcZjB8QRO2QFQtUZTP/Ghv6ZH4h/3P9/ZIF3hV5CSsUkr/eFf\nMY+fQL1K/puwfZbSDcH1GtDToOyoLFIvPXBJo0Llg/oF2TK1zGW3cPszeDf/Tm6x\nUwUMw2BjSQKBgEJzAMyLEBi4NoAlzJxkpcuN04gkloQHexljL6B8yzlls9i/lFGW\nw/4UZs6ZzymUmWZ7tcKBTGO/d5EhEP2rJqQb5KpPbcmTXP9amYCPVjchrGtYRI9O\nKSbEbR7ApuGxic/L2Sri0I/AaEcFDDel7ZkY8oTg11LcV+sBWPlZnrYxAoGBALXj\n/DlpQvu2KA/9TfwAhiE57Zax4S/vtdX0IHqd7TyCnEbK00rGYvksiBuTqIjMOSSw\nOn2K9mXOcZe/d4/YQe2CpY9Ag3qt4R2ArBf/POpep66lYp+thxWgCBfP0V1/rxZY\nTIppFJiZW9E8LvPqoBlAx+b1r4IyCrRQ0IDDFo+BAoGBAMCff4XKXHlV2SDOL5uh\nV/f9ApEdF4leuo+hoMryKuSQ9Y/H0A/Lzw6KP5FLvVtqc0Kw2D1oLy8O72a1xwfY\n8dpZMNzKAWWS7viN0oC+Ebj2Foc2Mn/J6jdhtP/YRLTqvoTWCa2rVcn4R1BurMIf\nLa4DJE9BagGdVNTDtynBhKhZ\n-----END PRIVATE KEY-----\n",
            "client_email": "dehkhodamap-e9f0da4ce9f6514021@ee-esmaeilkiani13877.iam.gserviceaccount.com",
            "client_id": "113062529451626176784",
            "auth_uri": "https://accounts.google.com/o/oauth2/auth",
            "token_uri": "https://oauth2.googleapis.com/token",
            "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
            "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dehkhodamap-e9f0da4ce9f6514021%40ee-esmaeilkiani13877.iam.gserviceaccount.com",
            "universe_domain": "googleapis.com"
        }
        credentials_file = 'ee-esmaeilkiani13877-cfdea6eaf411.json'
        with open(credentials_file, 'w') as f:
            json.dump(credentials_dict, f)
        credentials = ee.ServiceAccountCredentials(service_account, credentials_file)
        ee.Initialize(credentials)
        os.remove(credentials_file)
        return True
    except Exception as e:
        st.error(f"خطا در اتصال به Earth Engine: {e}")
        return False

# Create Earth Engine map with indices
def create_ee_map(farm_id, date_str, layer_type="NDVI"):
    try:
        farm_row = coordinates_df[coordinates_df['Farm_ID'] == farm_id].iloc[0]
        lat, lon = farm_row['Latitude'], farm_row['Longitude']
        m = folium.Map(location=[lat, lon], zoom_start=14, tiles='CartoDB positron')
        date_obj = datetime.strptime(date_str, '%Y-%m-%d')
        start_date = (date_obj - timedelta(days=5)).strftime('%Y-%m-%d')
        end_date = (date_obj + timedelta(days=5)).strftime('%Y-%m-%d')
        region = ee.Geometry.Point([lon, lat]).buffer(1500)
        s2 = ee.ImageCollection('COPERNICUS/S2_SR') \
            .filterDate(start_date, end_date) \
            .filterBounds(region) \
            .sort('CLOUDY_PIXEL_PERCENTAGE') \
            .first()
        if layer_type == "NDVI":
            index = s2.normalizedDifference(['B8', 'B4']).rename('NDVI')
            viz_params = {'min': -0.2, 'max': 0.8, 'palette': ['#ff0000', '#ff4500', '#ffd700', '#32cd32', '#006400']}
        elif layer_type == "NDMI":
            index = s2.normalizedDifference(['B8', 'B11']).rename('NDMI')
            viz_params = {'min': -0.5, 'max': 0.5, 'palette': ['#8b0000', '#ff8c00', '#00ced1', '#00b7eb', '#00008b']}
        elif layer_type == "EVI":
            nir = s2.select('B8')
            red = s2.select('B4')
            blue = s2.select('B2')
            index = nir.subtract(red).multiply(2.5).divide(nir.add(red.multiply(6)).subtract(blue.multiply(7.5)).add(1)).rename('EVI')
            viz_params = {'min': 0, 'max': 1, 'palette': ['#d73027', '#f46d43', '#fdae61', '#fee08b', '#4caf50']}
        elif layer_type == "NDWI":
            index = s2.normalizedDifference(['B3', 'B8']).rename('NDWI')
            viz_params = {'min': -0.5, 'max': 0.5, 'palette': ['#00008b', '#00b7eb', '#add8e6', '#fdae61', '#d73027']}
        map_id_dict = ee.Image(index).getMapId(viz_params)
        folium.TileLayer(
            tiles=map_id_dict['tile_fetcher'].url_format,
            attr='Google Earth Engine',
            name=layer_type,
            overlay=True,
            control=True
        ).add_to(m)
        folium.Marker([lat, lon], popup=f'مزرعه {farm_id}', icon=folium.Icon(color='green', icon='leaf')).add_to(m)
        folium.LayerControl().add_to(m)
        return m
    except Exception as e:
        st.error(f"خطا در ایجاد نقشه: {e}")
        return None

# Generate real growth data
def generate_real_growth_data(selected_variety="all", selected_age="all"):
    filtered_farms = farm_df
    if selected_variety != "all":
        filtered_farms = filtered_farms[filtered_farms['Variety'] == selected_variety]
    if selected_age != "all":
        filtered_farms = filtered_farms[filtered_farms['Age'] == selected_age]
    
    farm_growth_data = []
    weeks = filtered_farms['Week'].unique()
    for farm_id in filtered_farms['Farm_ID'].unique():
        farm_data = filtered_farms[filtered_farms['Farm_ID'] == farm_id]
        growth_data = {
            'farm_id': farm_id,
            'variety': farm_data['Variety'].iloc[0] if not farm_data.empty else 'Unknown',
            'age': farm_data['Age'].iloc[0] if not farm_data.empty else 'Unknown',
            'weeks': weeks,
            'heights': [farm_data[farm_data['Week'] == week]['CurrentHeight'].mean() if not farm_data[farm_data['Week'] == week].empty else 0 for week in weeks]
        }
        farm_growth_data.append(growth_data)
    
    if farm_growth_data:
        avg_heights = []
        for week in weeks:
            week_heights = [farm['heights'][list(weeks).index(week)] for farm in farm_growth_data if farm['heights'][list(weeks).index(week)] > 0]
            avg_heights.append(round(sum(week_heights) / len(week_heights)) if week_heights else 0)
        avg_growth_data = {'farm_id': 'میانگین', 'variety': 'همه', 'age': 'همه', 'weeks': weeks, 'heights': avg_heights}
        return {'individual': farm_growth_data, 'average': avg_growth_data}
    return {
        'individual': [],
        'average': {'farm_id': 'میانگین', 'variety': 'همه', 'age': 'همه', 'weeks': weeks, 'heights': [0] * len(weeks)}
    }

# Initialize Earth Engine and load data
ee_initialized = initialize_earth_engine()
farm_df = load_farm_data()
coordinates_df = load_coordinates_data()
day_df = load_day_data()

# Load animations
lottie_farm = load_lottie_url('https://assets5.lottiefiles.com/packages/lf20_ystsffqy.json')
lottie_analysis = load_lottie_url('https://assets3.lottiefiles.com/packages/lf20_qp1q7mct.json')
lottie_report = load_lottie_url('https://assets9.lottiefiles.com/packages/lf20_vwcugezu.json')

# Create session state for storing data
if 'heights_df' not in st.session_state:
    st.session_state.heights_df = farm_df.copy()

# Main header
st.markdown('<div class="main-header">', unsafe_allow_html=True)
st.markdown('<h1>سامانه هوشمند پایش مزارع نیشکر دهخدا</h1>', unsafe_allow_html=True)
st.markdown('<p>پلتفرم جامع مدیریت، پایش و تحلیل داده‌های مزارع نیشکر با فناوری پیشرفته</p>', unsafe_allow_html=True)
st.markdown('</div>', unsafe_allow_html=True)

# Navigation menu
selected = option_menu(
    menu_title=None,
    options=["داشبورد", "نقشه مزارع", "ورود اطلاعات", "تحلیل داده‌ها", "گزارش‌گیری", "تنظیمات"],
    icons=["speedometer2", "map", "pencil-square", "graph-up", "file-earmark-text", "gear"],
    menu_icon="cast",
    default_index=0,
    orientation="horizontal",
    styles={
        "container": {"padding": "0!important", "background-color": "transparent", "margin-bottom": "20px"},
        "icon": {"color": "#2ecc71", "font-size": "18px"}, 
        "nav-link": {"font-size": "16px", "text-align": "center", "margin":"0px", "--hover-color": "#e9f7ef", "border-radius": "12px"},
        "nav-link-selected": {"background-color": "#2ecc71", "color": "white", "font-weight": "600"},
    }
)

# Dashboard
if selected == "داشبورد":
    st.markdown('<div class="metric-container">', unsafe_allow_html=True)
    
    st.markdown("""
    <div class="metric-card">
        <div class="metric-icon">🌾</div>
        <div class="metric-value">{}</div>
        <div class="metric-label">تعداد مزارع</div>
    </div>
    """.format(int(len(farm_df["Farm_ID"].unique()))), unsafe_allow_html=True)
    
    st.markdown("""
    <div class="metric-card">
        <div class="metric-icon">📏</div>
        <div class="metric-value">{:.0f} ha</div>
        <div class="metric-label">مساحت کل</div>
    </div>
    """.format(farm_df["Area"].sum()), unsafe_allow_html=True)
    
    st.markdown("""
    <div class="metric-card">
        <div class="metric-icon">📈</div>
        <div class="metric-value">{:.1f} cm</div>
        <div class="metric-label">میانگین ارتفاع</div>
    </div>
    """.format(farm_df["CurrentHeight"].mean()), unsafe_allow_html=True)
    
    st.markdown("""
    <div class="metric-card">
        <div class="metric-icon">💧</div>
        <div class="metric-value">{:.1f}%</div>
        <div class="metric-label">میانگین رطوبت</div>
    </div>
    """.format(farm_df["CurrentMoisture"].mean()), unsafe_allow_html=True)
    
    st.markdown('</div>', unsafe_allow_html=True)
    
    tab1, tab2, tab3, tab4 = st.tabs(["نمای کلی", "نقشه مزارع", "نمودارها", "داده‌ها"])
    
    with tab1:
        st.subheader("توزیع واریته‌ها و سن محصول")
        col1, col2 = st.columns(2)
        with col1:
            fig = px.pie(farm_df['Variety'].value_counts().reset_index(), values='count', names='Variety', title='توزیع واریته‌ها')
            st.plotly_chart(fig, use_container_width=True)
        with col2:
            fig = px.pie(farm_df['Age'].value_counts().reset_index(), values='count', names='Age', title='توزیع سن محصول')
            st.plotly_chart(fig, use_container_width=True)
        st_lottie(lottie_farm, height=200, key="farm_animation")
    
    with tab2:
        if not coordinates_df.empty:
            m = folium.Map(location=[31.45, 48.72], zoom_start=12)
            for _, farm in coordinates_df.iterrows():
                folium.Marker([farm['Latitude'], farm['Longitude']], popup=f'مزرعه {farm["Farm_ID"]}').add_to(m)
            folium_static(m, width=1000, height=600)
    
    with tab3:
        st.subheader("نمودار رشد")
        col1, col2 = st.columns(2)
        with col1:
            variety = st.selectbox("انتخاب واریته", ["all"] + list(farm_df['Variety'].unique()), key="variety_chart")
        with col2:
            age = st.selectbox("انتخاب سن", ["all"] + list(farm_df['Age'].unique()), key="age_chart")
        growth_data = generate_real_growth_data(variety, age)
        fig = go.Figure()
        for farm_data in growth_data['individual'][:5]:
            fig.add_trace(go.Scatter(x=farm_data['weeks'], y=farm_data['heights'], mode='lines+markers', name=f"مزرعه {farm_data['farm_id']}"))
        fig.update_layout(title='رشد هفتگی مزارع', xaxis_title='هفته', yaxis_title='ارتفاع (سانتی‌متر)')
        st.plotly_chart(fig, use_container_width=True)
    
    with tab4:
        st.subheader("داده‌های مزارع")
        st.dataframe(farm_df, use_container_width=True)

# Map Page
elif selected == "نقشه مزارع":
    st.markdown("## نقشه مزارع با شاخص‌های ماهواره‌ای")
    col1, col2 = st.columns([1, 3])
    with col1:
        farm_id = st.selectbox("انتخاب مزرعه", coordinates_df['Farm_ID'].tolist())
        date = st.date_input("انتخاب تاریخ", datetime.now())
        layer_type = st.selectbox("انتخاب شاخص", ["NDVI", "NDMI", "EVI", "NDWI"])
        if st.button("تولید نقشه"):
            with st.spinner('در حال تولید نقشه...'):
                m = create_ee_map(farm_id, date.strftime('%Y-%m-%d'), layer_type)
                if m:
                    st.session_state['last_map'] = m
                    st.success(f"نقشه {layer_type} تولید شد.")
    with col2:
        if 'last_map' in st.session_state:
            folium_static(st.session_state['last_map'], width=800, height=600)

# Data Entry Page
elif selected == "ورود اطلاعات":
    st.markdown("## ورود اطلاعات روزانه مزارع")
    tab1, tab2 = st.tabs(["ورود دستی", "آپلود فایل"])
    
    with tab1:
        col1, col2 = st.columns(2)
        with col1:
            week = st.selectbox("انتخاب هفته", [str(i) for i in range(1, 23)], key="week_entry")
        with col2:
            day = st.selectbox("انتخاب روز", day_df['Day'].unique(), key="day_entry")
        filtered_farms = farm_df[farm_df['Week'] == int(week)]
        if not filtered_farms.empty:
            data_key = f"data_{week}_{day}"
            if data_key not in st.session_state:
                st.session_state[data_key] = pd.DataFrame({
                    'Farm_ID': filtered_farms['Farm_ID'],
                    'Station1': [0] * len(filtered_farms),
                    'Station2': [0] * len(filtered_farms),
                    'Station3': [0] * len(filtered_farms),
                    'Station4': [0] * len(filtered_farms),
                    'Station5': [0] * len(filtered_farms),
                    'CurrentHeight': [0.0] * len(filtered_farms),
                    'CurrentMoisture': [0.0] * len(filtered_farms)
                })
            edited_df = st.data_editor(st.session_state[data_key], use_container_width=True)
            if st.button("ذخیره اطلاعات"):
                st.session_state.heights_df = pd.concat([st.session_state.heights_df, edited_df], ignore_index=True)
                st.success("داده‌ها ذخیره شدند.")
    
    with tab2:
        uploaded_file = st.file_uploader("آپلود فایل", type=["csv", "xlsx"])
        if uploaded_file:
            try:
                df = pd.read_csv(uploaded_file) if uploaded_file.name.endswith('.csv') else pd.read_excel(uploaded_file)
                numeric_cols = ['CurrentHeight', 'CurrentMoisture', 'Station1', 'Station2', 'Station3', 'Station4', 'Station5']
                for col in numeric_cols:
                    if col in df.columns:
                        df[col] = pd.to_numeric(df[col], errors='coerce').fillna(0)
                st.dataframe(df)
                if st.button("ذخیره فایل"):
                    st.session_state.heights_df = pd.concat([st.session_state.heights_df, df], ignore_index=True)
                    st.success("فایل ذخیره شد.")
            except Exception as e:
                st.error(f"خطا در خواندن فایل: {e}")

# Data Analysis Page
elif selected == "تحلیل داده‌ها":
    st.markdown("## تحلیل هوشمند داده‌ها")
    tab1, tab2, tab3, tab4 = st.tabs(["تحلیل رشد", "مقایسه واریته‌ها", "تحلیل رطوبت", "پیش‌بینی"])
    
    with tab1:
        col1, col2 = st.columns(2)
        with col1:
            variety = st.selectbox("انتخاب واریته", ["all"] + list(farm_df['Variety'].unique()), key="variety_analysis")
        with col2:
            age = st.selectbox("انتخاب سن", ["all"] + list(farm_df['Age'].unique()), key="age_analysis")
        growth_data = generate_real_growth_data(variety, age)
        fig = go.Figure()
        for farm_data in growth_data['individual'][:5]:
            fig.add_trace(go.Scatter(x=farm_data['weeks'], y=farm_data['heights'], mode='lines+markers', name=f"مزرعه {farm_data['farm_id']}"))
        fig.update_layout(title='رشد هفتگی', xaxis_title='هفته', yaxis_title='ارتفاع (سانتی‌متر)')
        st.plotly_chart(fig, use_container_width=True)
    
    with tab2:
        fig = px.box(farm_df, x='Variety', y='CurrentHeight', title='مقایسه ارتفاع بر اساس واریته')
        st.plotly_chart(fig, use_container_width=True)
    
    with tab3:
        fig = px.scatter(farm_df, x='CurrentMoisture', y='CurrentHeight', color='Farm_ID', title='همبستگی رطوبت و ارتفاع')
        st.plotly_chart(fig, use_container_width=True)
    
    with tab4:
        farm_id = st.selectbox("انتخاب مزرعه", farm_df['Farm_ID'].tolist(), key="predict_farm")
        farm_data = farm_df[farm_df['Farm_ID'] == farm_id]
        if len(farm_data) > 1:
            model = LinearRegression()
            model.fit(farm_data['Week'].values.reshape(-1, 1), farm_data['CurrentHeight'].values)
            future_weeks = np.array(range(max(farm_data['Week']) + 1, 30)).reshape(-1, 1)
            future_heights = model.predict(future_weeks)
            fig = go.Figure()
            fig.add_trace(go.Scatter(x=farm_data['Week'], y=farm_data['CurrentHeight'], mode='lines+markers', name='داده‌های واقعی'))
            fig.add_trace(go.Scatter(x=future_weeks.flatten(), y=future_heights, mode='lines', name='پیش‌بینی'))
            fig.update_layout(title=f'پیش‌بینی رشد مزرعه {farm_id}', xaxis_title='هفته', yaxis_title='ارتفاع (سانتی‌متر)')
            st.plotly_chart(fig, use_container_width=True)

# Report Generation Page
elif selected == "گزارش‌گیری":
    st.markdown("## گزارش‌گیری")
    report_week = st.selectbox("انتخاب هفته", [str(i) for i in range(1, 23)], key="report_week")
    report_day = st.selectbox("انتخاب روز", day_df['Day'].unique(), key="report_day")
    report_df = st.session_state.heights_df[
        (st.session_state.heights_df['Week'] == int(report_week)) & 
        (st.session_state.heights_df['Farm_ID'].isin(day_df[day_df['Day'] == report_day]['Farm_ID']))
    ]
    if not report_df.empty:
        st.dataframe(report_df)
        csv = report_df.to_csv(index=False).encode('utf-8')
        st.download_button(label="دانلود گزارش", data=csv, file_name=f"report_week_{report_week}_day_{report_day}.csv")
    else:
        st.warning(f"داده‌ای برای هفته {report_week} و روز {report_day} یافت نشد.")
    st_lottie(lottie_report, height=200, key="report_animation")

# Settings Page
elif selected == "تنظیمات":
    st.markdown("## تنظیمات سامانه")
    if st.button("بارگذاری مجدد داده‌ها"):
        st.session_state.heights_df = load_farm_data()
        st.success("داده‌ها به‌روزرسانی شدند.")
    theme = st.selectbox("انتخاب تم", ["سبز (پیش‌فرض)", "آبی"], key="theme_select")
    if theme == "آبی":
        st.markdown("""
        <style>
            .main-header {background: linear-gradient(90deg, #3498db 0%, #2980b9 100%);}
            .metric-card {background: linear-gradient(135deg, #3498db 0%, #2980b9 100%);}
            .stButton>button {background: linear-gradient(90deg, #3498db 0%, #2980b9 100%);}
            footer {background: linear-gradient(90deg, #3498db 0%, #2980b9 100%);}
        </style>
        """, unsafe_allow_html=True)

# Footer
st.markdown("""
<footer>
    <p>© 2025 سامانه هوشمند پایش مزارع نیشکر دهخدا. تمامی حقوق محفوظ است.</p>
</footer>
""", unsafe_allow_html=True)