Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,39 +1,565 @@
|
|
1 |
import streamlit as st
|
2 |
-
import ee
|
3 |
-
import folium
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
-
import
|
7 |
-
import requests
|
8 |
-
import json
|
9 |
-
import os
|
10 |
from streamlit_folium import folium_static
|
11 |
-
import
|
|
|
|
|
|
|
|
|
12 |
import plotly.express as px
|
13 |
import plotly.graph_objects as go
|
14 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
st.set_page_config(
|
18 |
-
page_title="
|
19 |
page_icon="🌿",
|
20 |
layout="wide",
|
21 |
initial_sidebar_state="expanded"
|
22 |
)
|
23 |
|
24 |
-
#
|
25 |
-
st.
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
# Load
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
@st.cache_resource
|
30 |
-
def
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
credentials_path = 'credentials.json'
|
35 |
-
with open(credentials_path, 'w') as f:
|
36 |
-
json_content = {
|
37 |
"type": "service_account",
|
38 |
"project_id": "ee-esmaeilkiani13877",
|
39 |
"private_key_id": "cfdea6eaf4115cb6462626743e4b15df85fd0c7f",
|
@@ -46,737 +572,1136 @@ def initialize_ee():
|
|
46 |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dehkhodamap-e9f0da4ce9f6514021%40ee-esmaeilkiani13877.iam.gserviceaccount.com",
|
47 |
"universe_domain": "googleapis.com"
|
48 |
}
|
49 |
-
json
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
#
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
s2 = ee.ImageCollection('COPERNICUS/S2_SR') \
|
85 |
-
.filterBounds(region) \
|
86 |
-
.filterDate(date_range[0], date_range[1]) \
|
87 |
-
.sort('CLOUDY_PIXEL_PERCENTAGE') \
|
88 |
-
.first()
|
89 |
-
|
90 |
-
if s2 is None:
|
91 |
-
return None, None, None, None
|
92 |
-
|
93 |
-
# Calculate indices
|
94 |
-
ndvi = s2.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
95 |
-
ndwi = s2.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
96 |
-
|
97 |
-
# LAI calculation (Leaf Area Index)
|
98 |
-
# Using simplified model: LAI = 3.618 * NDVI - 0.118
|
99 |
-
lai = ndvi.multiply(3.618).subtract(0.118).rename('LAI')
|
100 |
-
|
101 |
-
# Chlorophyll content (CHL)
|
102 |
-
# Using ratio of bands B8/B5
|
103 |
-
chl = s2.select('B8').divide(s2.select('B5')).rename('CHL')
|
104 |
-
|
105 |
-
# Create visualization parameters
|
106 |
-
ndvi_vis = {
|
107 |
-
'min': 0,
|
108 |
-
'max': 1,
|
109 |
-
'palette': ['red', 'yellow', 'green']
|
110 |
-
}
|
111 |
-
|
112 |
-
ndwi_vis = {
|
113 |
-
'min': -1,
|
114 |
-
'max': 1,
|
115 |
-
'palette': ['red', 'white', 'blue']
|
116 |
-
}
|
117 |
-
|
118 |
-
lai_vis = {
|
119 |
-
'min': 0,
|
120 |
-
'max': 5,
|
121 |
-
'palette': ['white', 'lightgreen', 'darkgreen']
|
122 |
-
}
|
123 |
-
|
124 |
-
chl_vis = {
|
125 |
-
'min': 1,
|
126 |
-
'max': 3,
|
127 |
-
'palette': ['white', 'yellow', 'green']
|
128 |
-
}
|
129 |
-
|
130 |
-
# Get NDVI map tile URL
|
131 |
-
ndvi_mapid = ndvi.getMapId(ndvi_vis)
|
132 |
-
ndvi_url = ndvi_mapid['tile_fetcher'].url_format
|
133 |
-
|
134 |
-
# Get NDWI map tile URL
|
135 |
-
ndwi_mapid = ndwi.getMapId(ndwi_vis)
|
136 |
-
ndwi_url = ndwi_mapid['tile_fetcher'].url_format
|
137 |
-
|
138 |
-
# Get LAI map tile URL
|
139 |
-
lai_mapid = lai.getMapId(lai_vis)
|
140 |
-
lai_url = lai_mapid['tile_fetcher'].url_format
|
141 |
-
|
142 |
-
# Get CHL map tile URL
|
143 |
-
chl_mapid = chl.getMapId(chl_vis)
|
144 |
-
chl_url = chl_mapid['tile_fetcher'].url_format
|
145 |
-
|
146 |
-
# Get values at point
|
147 |
-
ndvi_val = ndvi.reduceRegion(
|
148 |
-
reducer=ee.Reducer.mean(),
|
149 |
-
geometry=poi,
|
150 |
-
scale=10
|
151 |
-
).getInfo()['NDVI']
|
152 |
-
|
153 |
-
ndwi_val = ndwi.reduceRegion(
|
154 |
-
reducer=ee.Reducer.mean(),
|
155 |
-
geometry=poi,
|
156 |
-
scale=10
|
157 |
-
).getInfo()['NDWI']
|
158 |
-
|
159 |
-
lai_val = lai.reduceRegion(
|
160 |
-
reducer=ee.Reducer.mean(),
|
161 |
-
geometry=poi,
|
162 |
-
scale=10
|
163 |
-
).getInfo()['LAI']
|
164 |
-
|
165 |
-
chl_val = chl.reduceRegion(
|
166 |
-
reducer=ee.Reducer.mean(),
|
167 |
-
geometry=poi,
|
168 |
-
scale=10
|
169 |
-
).getInfo()['CHL']
|
170 |
-
|
171 |
-
return {
|
172 |
-
'urls': {
|
173 |
-
'ndvi': ndvi_url,
|
174 |
-
'ndwi': ndwi_url,
|
175 |
-
'lai': lai_url,
|
176 |
-
'chl': chl_url
|
177 |
-
},
|
178 |
-
'values': {
|
179 |
-
'ndvi': ndvi_val,
|
180 |
-
'ndwi': ndwi_val,
|
181 |
-
'lai': lai_val,
|
182 |
-
'chl': chl_val
|
183 |
}
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
region = poi.buffer(500) # 500m buffer around the point
|
194 |
-
|
195 |
-
# Load Sentinel-2 collection for the time period
|
196 |
-
s2_collection = ee.ImageCollection('COPERNICUS/S2_SR') \
|
197 |
-
.filterBounds(region) \
|
198 |
-
.filterDate(start_date, end_date) \
|
199 |
-
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
|
200 |
-
|
201 |
-
# Create a function to calculate indices for each image
|
202 |
-
def add_indices(image):
|
203 |
-
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
204 |
-
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
205 |
-
lai = ndvi.multiply(3.618).subtract(0.118).rename('LAI')
|
206 |
-
chl = image.select('B8').divide(image.select('B5')).rename('CHL')
|
207 |
-
|
208 |
-
# Get the timestamp
|
209 |
-
date = ee.Date(image.get('system:time_start'))
|
210 |
-
|
211 |
-
# Get values at the point
|
212 |
-
ndvi_val = ndvi.reduceRegion(
|
213 |
-
reducer=ee.Reducer.mean(),
|
214 |
-
geometry=poi,
|
215 |
-
scale=10
|
216 |
-
).get('NDVI')
|
217 |
-
|
218 |
-
ndwi_val = ndwi.reduceRegion(
|
219 |
-
reducer=ee.Reducer.mean(),
|
220 |
-
geometry=poi,
|
221 |
-
scale=10
|
222 |
-
).get('NDWI')
|
223 |
-
|
224 |
-
lai_val = lai.reduceRegion(
|
225 |
-
reducer=ee.Reducer.mean(),
|
226 |
-
geometry=poi,
|
227 |
-
scale=10
|
228 |
-
).get('LAI')
|
229 |
-
|
230 |
-
chl_val = chl.reduceRegion(
|
231 |
-
reducer=ee.Reducer.mean(),
|
232 |
-
geometry=poi,
|
233 |
-
scale=10
|
234 |
-
).get('CHL')
|
235 |
-
|
236 |
-
# Return a feature with these properties
|
237 |
-
return ee.Feature(None, {
|
238 |
-
'date': date.format('YYYY-MM-dd'),
|
239 |
-
'ndvi': ndvi_val,
|
240 |
-
'ndwi': ndwi_val,
|
241 |
-
'lai': lai_val,
|
242 |
-
'chl': chl_val
|
243 |
-
})
|
244 |
-
|
245 |
-
# Map the function over the collection
|
246 |
-
indices_fc = s2_collection.map(add_indices)
|
247 |
-
|
248 |
-
# Get the data as a list of dictionaries
|
249 |
-
indices_data = indices_fc.getInfo()['features']
|
250 |
-
|
251 |
-
# Convert to pandas DataFrame
|
252 |
-
if indices_data:
|
253 |
-
data_list = [{'date': feature['properties']['date'],
|
254 |
-
'ndvi': feature['properties']['ndvi'],
|
255 |
-
'ndwi': feature['properties']['ndwi'],
|
256 |
-
'lai': feature['properties']['lai'],
|
257 |
-
'chl': feature['properties']['chl']}
|
258 |
-
for feature in indices_data]
|
259 |
-
|
260 |
-
df = pd.DataFrame(data_list)
|
261 |
-
df['date'] = pd.to_datetime(df['date'])
|
262 |
-
return df.sort_values('date')
|
263 |
-
else:
|
264 |
-
return pd.DataFrame(columns=['date', 'ndvi', 'ndwi', 'lai', 'chl'])
|
265 |
|
266 |
-
#
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
'
|
281 |
-
'
|
282 |
-
'
|
283 |
-
'
|
284 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
daily_forecast.append({
|
293 |
-
'date': date,
|
294 |
-
'temp_min': day.get('temp', {}).get('min'),
|
295 |
-
'temp_max': day.get('temp', {}).get('max'),
|
296 |
-
'humidity': day.get('humidity'),
|
297 |
-
'wind_speed': day.get('wind_speed')
|
298 |
-
})
|
299 |
-
|
300 |
-
return {
|
301 |
-
'current': current_weather,
|
302 |
-
'forecast': daily_forecast
|
303 |
}
|
304 |
-
|
305 |
-
|
306 |
-
|
|
|
|
|
307 |
|
308 |
-
#
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
# Add base tiles
|
314 |
-
folium.TileLayer('OpenStreetMap').add_to(m)
|
315 |
-
folium.TileLayer('Stamen Terrain').add_to(m)
|
316 |
-
|
317 |
-
# Add satellite data tile layer
|
318 |
-
folium.TileLayer(
|
319 |
-
tiles=tile_url,
|
320 |
-
attr='Google Earth Engine',
|
321 |
-
name=layer_name,
|
322 |
-
overlay=True,
|
323 |
-
opacity=0.7
|
324 |
-
).add_to(m)
|
325 |
-
|
326 |
-
# Add marker for the farm
|
327 |
-
folium.Marker(
|
328 |
-
[lat, lon],
|
329 |
-
popup=f"Farm Location\nLat: {lat}\nLon: {lon}"
|
330 |
-
).add_to(m)
|
331 |
-
|
332 |
-
# Add layer control
|
333 |
-
folium.LayerControl().add_to(m)
|
334 |
-
|
335 |
-
return m
|
336 |
|
337 |
-
#
|
338 |
-
|
|
|
|
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
-
|
348 |
-
|
349 |
-
|
|
|
|
|
350 |
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
|
358 |
-
|
359 |
-
|
|
|
|
|
|
|
|
|
360 |
|
361 |
-
|
362 |
-
|
|
|
|
|
|
|
|
|
363 |
|
364 |
-
#
|
365 |
-
|
366 |
-
start_date = end_date - timedelta(days=30)
|
367 |
|
368 |
-
|
369 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
|
371 |
-
|
372 |
-
|
373 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
|
375 |
-
|
376 |
-
|
377 |
-
days = farm_info['روز'].unique().tolist()
|
378 |
-
selected_day = st.sidebar.selectbox("Select Day", days)
|
379 |
|
380 |
-
|
381 |
-
|
|
|
|
|
|
|
|
|
|
|
382 |
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
st.metric("Farm", selected_farm)
|
390 |
-
|
391 |
-
with col2:
|
392 |
-
st.metric("Age", farm_age)
|
393 |
-
|
394 |
-
with col3:
|
395 |
-
st.metric("Variety", farm_variety)
|
396 |
-
|
397 |
-
with col4:
|
398 |
-
st.metric("Area", f"{day_info.iloc[0]['مساحت زیرمجموعه']} ha")
|
399 |
-
|
400 |
-
# Fetch satellite data
|
401 |
-
with st.spinner("Fetching satellite data..."):
|
402 |
-
indices_data = get_satellite_indices(
|
403 |
-
farm_lat,
|
404 |
-
farm_lon,
|
405 |
-
[start_date_str, end_date_str]
|
406 |
-
)
|
407 |
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
415 |
|
416 |
-
|
417 |
-
|
418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
|
420 |
-
|
421 |
-
tab1, tab2, tab3, tab4 = st.tabs([
|
422 |
-
"Current Status",
|
423 |
-
"Time Series Analysis",
|
424 |
-
"Weather Data",
|
425 |
-
"Weekly Report"
|
426 |
-
])
|
427 |
|
428 |
-
with
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
443 |
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
|
448 |
-
|
449 |
-
|
450 |
-
|
|
|
|
|
|
|
451 |
|
452 |
-
|
453 |
-
|
|
|
454 |
|
455 |
-
|
|
|
|
|
|
|
|
|
|
|
456 |
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
farm_lon,
|
461 |
-
indices_data['urls']['ndvi'],
|
462 |
-
"NDVI"
|
463 |
-
)
|
464 |
-
st.write("NDVI (Normalized Difference Vegetation Index) - Higher values (green) indicate healthy vegetation")
|
465 |
-
folium_static(ndvi_map, width=800, height=500)
|
466 |
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
)
|
474 |
-
st.write("NDWI (Normalized Difference Water Index) - Higher values (blue) indicate more water content")
|
475 |
-
folium_static(ndwi_map, width=800, height=500)
|
476 |
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
farm_lon,
|
481 |
-
indices_data['urls']['lai'],
|
482 |
-
"LAI"
|
483 |
-
)
|
484 |
-
st.write("LAI (Leaf Area Index) - Higher values (darker green) indicate more leaf area")
|
485 |
-
folium_static(lai_map, width=800, height=500)
|
486 |
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
indices_data['urls']['chl'],
|
492 |
-
"CHL"
|
493 |
-
)
|
494 |
-
st.write("CHL (Chlorophyll Content) - Higher values (green) indicate more chlorophyll")
|
495 |
-
folium_static(chl_map, width=800, height=500)
|
496 |
-
else:
|
497 |
-
st.warning("No satellite data available for the selected date range. Try extending the date range.")
|
498 |
|
499 |
-
with
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
514 |
)
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
time_series,
|
520 |
-
x='date',
|
521 |
-
y='ndwi',
|
522 |
-
title=f"NDWI Time Series for {selected_farm}",
|
523 |
-
labels={"date": "Date", "ndwi": "NDWI Value"},
|
524 |
-
markers=True
|
525 |
)
|
526 |
st.plotly_chart(fig, use_container_width=True)
|
527 |
-
|
528 |
-
|
|
|
|
|
|
|
529 |
fig = px.line(
|
530 |
-
|
531 |
-
|
532 |
-
|
533 |
-
|
534 |
-
labels={"date": "Date", "lai": "LAI Value"},
|
535 |
markers=True
|
536 |
)
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
time_series,
|
542 |
-
x='date',
|
543 |
-
y='chl',
|
544 |
-
title=f"CHL Time Series for {selected_farm}",
|
545 |
-
labels={"date": "Date", "chl": "CHL Value"},
|
546 |
-
markers=True
|
547 |
)
|
548 |
st.plotly_chart(fig, use_container_width=True)
|
549 |
-
|
550 |
-
with ts_tabs[4]:
|
551 |
-
# Comparison of all indices
|
552 |
-
fig = go.Figure()
|
553 |
-
|
554 |
-
fig.add_trace(go.Scatter(
|
555 |
-
x=time_series['date'],
|
556 |
-
y=time_series['ndvi'],
|
557 |
-
mode='lines+markers',
|
558 |
-
name='NDVI'
|
559 |
-
))
|
560 |
-
|
561 |
-
fig.add_trace(go.Scatter(
|
562 |
-
x=time_series['date'],
|
563 |
-
y=time_series['ndwi'],
|
564 |
-
mode='lines+markers',
|
565 |
-
name='NDWI'
|
566 |
-
))
|
567 |
|
568 |
-
|
569 |
-
|
570 |
-
y=time_series['lai'],
|
571 |
-
mode='lines+markers',
|
572 |
-
name='LAI'
|
573 |
-
))
|
574 |
-
|
575 |
-
fig.add_trace(go.Scatter(
|
576 |
-
x=time_series['date'],
|
577 |
-
y=time_series['chl'],
|
578 |
-
mode='lines+markers',
|
579 |
-
name='CHL'
|
580 |
-
))
|
581 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
582 |
fig.update_layout(
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
legend_title="Index"
|
587 |
)
|
588 |
-
|
589 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
590 |
else:
|
591 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
592 |
|
593 |
-
with
|
594 |
-
|
595 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
596 |
|
597 |
-
|
598 |
-
current = weather_data['current']
|
599 |
-
forecast = weather_data['forecast']
|
600 |
|
601 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
602 |
|
603 |
-
|
604 |
-
st.metric("Temperature", f"{current['temp']}°C")
|
605 |
|
606 |
-
|
607 |
-
st.metric("Humidity", f"{current['humidity']}%")
|
608 |
|
609 |
-
|
610 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
611 |
|
612 |
-
|
613 |
|
614 |
-
|
615 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
616 |
|
617 |
-
|
618 |
-
|
|
|
|
|
619 |
|
620 |
-
# Plot temperature forecast
|
621 |
fig = go.Figure()
|
622 |
-
|
623 |
fig.add_trace(go.Scatter(
|
624 |
-
x=
|
625 |
-
y=
|
626 |
mode='lines+markers',
|
627 |
-
name='
|
628 |
-
line=dict(color='
|
|
|
629 |
))
|
630 |
-
|
631 |
fig.add_trace(go.Scatter(
|
632 |
-
x=
|
633 |
-
y=
|
634 |
-
mode='lines
|
635 |
-
name='
|
636 |
-
line=dict(color='
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
637 |
))
|
638 |
-
|
639 |
fig.update_layout(
|
640 |
-
title=
|
641 |
-
xaxis_title=
|
642 |
-
yaxis_title=
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
-
|
647 |
-
|
648 |
-
# Plot humidity forecast
|
649 |
-
fig = px.line(
|
650 |
-
forecast_df,
|
651 |
-
x='date',
|
652 |
-
y='humidity',
|
653 |
-
title="Humidity Forecast",
|
654 |
-
labels={"date": "Date", "humidity": "Humidity (%)"},
|
655 |
-
markers=True
|
656 |
)
|
657 |
-
|
658 |
-
st.plotly_chart(fig, use_container_width=True)
|
659 |
-
|
660 |
-
# Plot wind speed forecast
|
661 |
-
fig = px.line(
|
662 |
-
forecast_df,
|
663 |
-
x='date',
|
664 |
-
y='wind_speed',
|
665 |
-
title="Wind Speed Forecast",
|
666 |
-
labels={"date": "Date", "wind_speed": "Wind Speed (m/s)"},
|
667 |
-
markers=True
|
668 |
-
)
|
669 |
-
|
670 |
st.plotly_chart(fig, use_container_width=True)
|
671 |
else:
|
672 |
-
st.warning("
|
|
|
|
|
|
|
|
|
673 |
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
)
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
with col2:
|
752 |
-
st.metric("LAI Change", f"{lai_change:.2f}%", delta=f"{lai_change:.2f}%")
|
753 |
-
|
754 |
-
# Growth status assessment
|
755 |
-
st.subheader("Growth Status Assessment")
|
756 |
-
|
757 |
-
if ndvi_change > 5 and lai_change > 5:
|
758 |
-
st.success("✅ Healthy Growth: The crop is showing good growth patterns with increasing vegetation indices.")
|
759 |
-
elif ndvi_change > 0 and lai_change > 0:
|
760 |
-
st.info("ℹ️ Moderate Growth: The crop is growing, but at a slower rate than expected.")
|
761 |
-
elif ndvi_change < 0 or lai_change < 0:
|
762 |
-
st.warning("⚠️ Growth Concern: The crop is showing signs of stress or declining health.")
|
763 |
-
|
764 |
-
# Recommendations
|
765 |
-
st.subheader("Recommendations")
|
766 |
-
|
767 |
-
if ndvi_change < 0:
|
768 |
-
st.warning("Consider checking for pest infestations or nutrient deficiencies.")
|
769 |
-
|
770 |
-
if ndwi_val < -0.3:
|
771 |
-
st.warning("Water stress detected. Consider irrigation schedule adjustments.")
|
772 |
-
|
773 |
-
if lai_val < 1.5:
|
774 |
-
st.warning("Low leaf area index. Investigate possible causes for poor canopy development.")
|
775 |
-
|
776 |
-
if chl_val < 1.5:
|
777 |
-
st.warning("Low chlorophyll content. Consider nitrogen fertilization.")
|
778 |
-
else:
|
779 |
-
st.warning("No data available for the last 7 days. Check your satellite data availability.")
|
780 |
-
else:
|
781 |
-
st.error("Failed to initialize Google Earth Engine. Please check your credentials.")
|
782 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
+
import folium
|
|
|
|
|
|
|
5 |
from streamlit_folium import folium_static
|
6 |
+
import ee
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
import time
|
10 |
+
from datetime import datetime, timedelta
|
11 |
import plotly.express as px
|
12 |
import plotly.graph_objects as go
|
13 |
+
from PIL import Image
|
14 |
+
import base64
|
15 |
+
from io import BytesIO
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
import seaborn as sns
|
18 |
+
import altair as alt
|
19 |
+
from streamlit_option_menu import option_menu
|
20 |
+
from streamlit_lottie import st_lottie
|
21 |
+
import requests
|
22 |
+
import hydralit_components as hc
|
23 |
+
from streamlit_extras.colored_header import colored_header
|
24 |
+
from streamlit_extras.metric_cards import style_metric_cards
|
25 |
+
from streamlit_extras.chart_container import chart_container
|
26 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
27 |
+
from streamlit_card import card
|
28 |
+
import pydeck as pdk
|
29 |
+
import math
|
30 |
+
from sklearn.linear_model import LinearRegression
|
31 |
|
32 |
+
# Page configuration with custom theme
|
33 |
st.set_page_config(
|
34 |
+
page_title="سامانه هوشمند پایش مزارع نیشکر دهخدا",
|
35 |
page_icon="🌿",
|
36 |
layout="wide",
|
37 |
initial_sidebar_state="expanded"
|
38 |
)
|
39 |
|
40 |
+
# Custom CSS with modern green design and animations
|
41 |
+
st.markdown("""
|
42 |
+
<style>
|
43 |
+
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@100;200;300;400;500;600;700;800;900&display=swap');
|
44 |
+
|
45 |
+
* {
|
46 |
+
font-family: 'Vazirmatn', sans-serif !important;
|
47 |
+
}
|
48 |
+
|
49 |
+
/* Main container styling */
|
50 |
+
.main {
|
51 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #e4e9f2 100%);
|
52 |
+
}
|
53 |
+
|
54 |
+
/* Header styling */
|
55 |
+
.main-header {
|
56 |
+
background: linear-gradient(90deg, #1a8754 0%, #115740 100%);
|
57 |
+
padding: 1.5rem;
|
58 |
+
border-radius: 12px;
|
59 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
60 |
+
margin-bottom: 2rem;
|
61 |
+
position: relative;
|
62 |
+
overflow: hidden;
|
63 |
+
animation: header-glow 3s infinite alternate;
|
64 |
+
}
|
65 |
+
|
66 |
+
@keyframes header-glow {
|
67 |
+
0% {
|
68 |
+
box-shadow: 0 8px 32px rgba(26, 135, 84, 0.1);
|
69 |
+
}
|
70 |
+
100% {
|
71 |
+
box-shadow: 0 8px 32px rgba(26, 135, 84, 0.3);
|
72 |
+
}
|
73 |
+
}
|
74 |
+
|
75 |
+
.main-header::before {
|
76 |
+
content: '';
|
77 |
+
position: absolute;
|
78 |
+
top: -50%;
|
79 |
+
left: -50%;
|
80 |
+
width: 200%;
|
81 |
+
height: 200%;
|
82 |
+
background: radial-gradient(circle, rgba(255,255,255,0.1) 0%, rgba(255,255,255,0) 70%);
|
83 |
+
transform: rotate(30deg);
|
84 |
+
z-index: 0;
|
85 |
+
}
|
86 |
+
|
87 |
+
.main-header h1 {
|
88 |
+
color: white;
|
89 |
+
font-weight: 700;
|
90 |
+
margin: 0;
|
91 |
+
position: relative;
|
92 |
+
z-index: 1;
|
93 |
+
}
|
94 |
+
|
95 |
+
.main-header p {
|
96 |
+
color: rgba(255, 255, 255, 0.8);
|
97 |
+
margin: 0;
|
98 |
+
position: relative;
|
99 |
+
z-index: 1;
|
100 |
+
}
|
101 |
+
|
102 |
+
/* Navigation menu styling */
|
103 |
+
.st-emotion-cache-1lcbz7b {
|
104 |
+
background-color: transparent !important;
|
105 |
+
padding: 0 !important;
|
106 |
+
margin-bottom: 20px !important;
|
107 |
+
}
|
108 |
+
|
109 |
+
.st-emotion-cache-1lcbz7b .st-emotion-cache-1j7d69d {
|
110 |
+
--hover-color: #e9f7ef !important;
|
111 |
+
border-radius: 10px !important;
|
112 |
+
font-size: 16px !important;
|
113 |
+
text-align: center !important;
|
114 |
+
margin: 0 !important;
|
115 |
+
}
|
116 |
+
|
117 |
+
.st-emotion-cache-1lcbz7b .st-emotion-cache-1j7d69d:hover {
|
118 |
+
background-color: #e9f7ef !important;
|
119 |
+
}
|
120 |
+
|
121 |
+
.st-emotion-cache-1lcbz7b .st-emotion-cache-1j7d69d[data-selected="true"] {
|
122 |
+
background-color: #1a8754 !important;
|
123 |
+
color: white !important;
|
124 |
+
font-weight: 600 !important;
|
125 |
+
}
|
126 |
+
|
127 |
+
.st-emotion-cache-1lcbz7b .st-emotion-cache-1j7d69d .st-emotion-cache-1m5q2i0 {
|
128 |
+
color: #1a8754 !important;
|
129 |
+
font-size: 18px !important;
|
130 |
+
}
|
131 |
+
|
132 |
+
/* Metric card styling */
|
133 |
+
.metric-card {
|
134 |
+
background: white;
|
135 |
+
border-radius: 12px;
|
136 |
+
padding: 1.5rem;
|
137 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.05);
|
138 |
+
transition: all 0.3s ease;
|
139 |
+
text-align: center;
|
140 |
+
}
|
141 |
+
|
142 |
+
.metric-card:hover {
|
143 |
+
transform: translateY(-5px);
|
144 |
+
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.1);
|
145 |
+
}
|
146 |
+
|
147 |
+
.metric-card .metric-value {
|
148 |
+
font-size: 2.5rem;
|
149 |
+
font-weight: 700;
|
150 |
+
color: #1a8754;
|
151 |
+
margin-bottom: 0.5rem;
|
152 |
+
}
|
153 |
+
|
154 |
+
.metric-card .metric-label {
|
155 |
+
font-size: 1rem;
|
156 |
+
color: #6c757d;
|
157 |
+
}
|
158 |
+
|
159 |
+
/* Map container styling */
|
160 |
+
.map-container {
|
161 |
+
border-radius: 12px;
|
162 |
+
overflow: hidden;
|
163 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.05);
|
164 |
+
}
|
165 |
+
|
166 |
+
/* Tabs styling */
|
167 |
+
.stTabs [data-baseweb="tab-list"] {
|
168 |
+
gap: 8px;
|
169 |
+
}
|
170 |
+
|
171 |
+
.stTabs [data-baseweb="tab"] {
|
172 |
+
border-radius: 4px 4px 0px 0px;
|
173 |
+
padding: 10px 16px;
|
174 |
+
background-color: #f8f9fa;
|
175 |
+
}
|
176 |
+
|
177 |
+
.stTabs [aria-selected="true"] {
|
178 |
+
background-color: #1a8754 !important;
|
179 |
+
color: white !important;
|
180 |
+
}
|
181 |
+
|
182 |
+
/* Sidebar styling */
|
183 |
+
[data-testid="stSidebar"] {
|
184 |
+
background-color: #ffffff;
|
185 |
+
border-right: 1px solid #e9ecef;
|
186 |
+
}
|
187 |
+
|
188 |
+
/* Animations */
|
189 |
+
@keyframes fadeIn {
|
190 |
+
0% { opacity: 0; transform: translateY(20px); }
|
191 |
+
100% { opacity: 1; transform: translateY(0); }
|
192 |
+
}
|
193 |
+
|
194 |
+
.animate-fadeIn {
|
195 |
+
animation: fadeIn 0.5s ease forwards;
|
196 |
+
}
|
197 |
+
|
198 |
+
/* Loading animation */
|
199 |
+
.loading-spinner {
|
200 |
+
display: flex;
|
201 |
+
justify-content: center;
|
202 |
+
align-items: center;
|
203 |
+
height: 100px;
|
204 |
+
}
|
205 |
+
|
206 |
+
.loading-spinner::after {
|
207 |
+
content: "";
|
208 |
+
width: 40px;
|
209 |
+
height: 40px;
|
210 |
+
border: 4px solid #f3f3f3;
|
211 |
+
border-top: 4px solid #1a8754;
|
212 |
+
border-radius: 50%;
|
213 |
+
animation: spin 1s linear infinite;
|
214 |
+
}
|
215 |
+
|
216 |
+
@keyframes spin {
|
217 |
+
0% { transform: rotate(0deg); }
|
218 |
+
100% { transform: rotate(360deg); }
|
219 |
+
}
|
220 |
+
|
221 |
+
/* RTL Support */
|
222 |
+
.rtl {
|
223 |
+
direction: rtl;
|
224 |
+
text-align: right;
|
225 |
+
}
|
226 |
+
|
227 |
+
/* Custom scrollbar */
|
228 |
+
::-webkit-scrollbar {
|
229 |
+
width: 8px;
|
230 |
+
height: 8px;
|
231 |
+
}
|
232 |
+
|
233 |
+
::-webkit-scrollbar-track {
|
234 |
+
background: #f1f1f1;
|
235 |
+
border-radius: 10px;
|
236 |
+
}
|
237 |
+
|
238 |
+
::-webkit-scrollbar-thumb {
|
239 |
+
background: #1a8754;
|
240 |
+
border-radius: 10px;
|
241 |
+
}
|
242 |
+
|
243 |
+
::-webkit-scrollbar-thumb:hover {
|
244 |
+
background: #115740;
|
245 |
+
}
|
246 |
+
|
247 |
+
/* Tooltip styling */
|
248 |
+
.tooltip {
|
249 |
+
position: relative;
|
250 |
+
display: inline-block;
|
251 |
+
}
|
252 |
+
|
253 |
+
.tooltip .tooltiptext {
|
254 |
+
visibility: hidden;
|
255 |
+
width: 120px;
|
256 |
+
background-color: #555;
|
257 |
+
color: #fff;
|
258 |
+
text-align: center;
|
259 |
+
border-radius: 6px;
|
260 |
+
padding: 5px;
|
261 |
+
position: absolute;
|
262 |
+
z-index: 1;
|
263 |
+
bottom: 125%;
|
264 |
+
left: 50%;
|
265 |
+
margin-left: -60px;
|
266 |
+
opacity: 0;
|
267 |
+
transition: opacity 0.3s;
|
268 |
+
}
|
269 |
+
|
270 |
+
.tooltip:hover .tooltiptext {
|
271 |
+
visibility: visible;
|
272 |
+
opacity: 1;
|
273 |
+
}
|
274 |
+
|
275 |
+
/* Data table styling */
|
276 |
+
.dataframe {
|
277 |
+
border-collapse: collapse;
|
278 |
+
width: 100%;
|
279 |
+
border-radius: 8px;
|
280 |
+
overflow: hidden;
|
281 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.05);
|
282 |
+
}
|
283 |
+
|
284 |
+
.dataframe th {
|
285 |
+
background-color: #1a8754;
|
286 |
+
color: white;
|
287 |
+
padding: 12px;
|
288 |
+
text-align: right;
|
289 |
+
}
|
290 |
+
|
291 |
+
.dataframe td {
|
292 |
+
padding: 10px 12px;
|
293 |
+
border-bottom: 1px solid #e9ecef;
|
294 |
+
}
|
295 |
+
|
296 |
+
.dataframe tr:nth-child(even) {
|
297 |
+
background-color: #f8f9fa;
|
298 |
+
}
|
299 |
+
|
300 |
+
.dataframe tr:hover {
|
301 |
+
background-color: #e9ecef;
|
302 |
+
}
|
303 |
+
|
304 |
+
/* Progress bar styling */
|
305 |
+
.stProgress > div > div > div > div {
|
306 |
+
background-color: #1a8754;
|
307 |
+
}
|
308 |
+
|
309 |
+
/* Notification styling */
|
310 |
+
.notification {
|
311 |
+
background-color: #d1e7dd;
|
312 |
+
color: #0f5132;
|
313 |
+
padding: 1rem;
|
314 |
+
border-radius: 8px;
|
315 |
+
margin-bottom: 1rem;
|
316 |
+
display: flex;
|
317 |
+
align-items: center;
|
318 |
+
animation: slideIn 0.5s ease;
|
319 |
+
}
|
320 |
+
|
321 |
+
@keyframes slideIn {
|
322 |
+
0% { transform: translateX(100%); opacity: 0; }
|
323 |
+
100% { transform: translateX(0); opacity: 1; }
|
324 |
+
}
|
325 |
+
|
326 |
+
.notification-icon {
|
327 |
+
margin-right: 0.5rem;
|
328 |
+
font-size: 1.2rem;
|
329 |
+
}
|
330 |
+
|
331 |
+
/* Custom select box */
|
332 |
+
.custom-select {
|
333 |
+
background-color: white;
|
334 |
+
border-radius: 8px;
|
335 |
+
padding: 0.5rem;
|
336 |
+
border: 1px solid #ced4da;
|
337 |
+
box-shadow: 0 2px 5px rgba(0, 0, 0, 0.05);
|
338 |
+
}
|
339 |
+
|
340 |
+
/* Glassmorphism effect */
|
341 |
+
.glass-card {
|
342 |
+
background: rgba(255, 255, 255, 0.7);
|
343 |
+
backdrop-filter: blur(10px);
|
344 |
+
-webkit-backdrop-filter: blur(10px);
|
345 |
+
border-radius: 12px;
|
346 |
+
border: 1px solid rgba(255, 255, 255, 0.3);
|
347 |
+
padding: 1.5rem;
|
348 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
349 |
+
}
|
350 |
+
|
351 |
+
/* Neumorphism effect */
|
352 |
+
.neumorphic-card {
|
353 |
+
background: #f0f0f3;
|
354 |
+
border-radius: 12px;
|
355 |
+
box-shadow: 10px 10px 20px #d1d1d4, -10px -10px 20px #ffffff;
|
356 |
+
padding: 1.5rem;
|
357 |
+
}
|
358 |
+
|
359 |
+
/* Gradient text */
|
360 |
+
.gradient-text {
|
361 |
+
background: linear-gradient(90deg, #1a8754 0%, #115740 100%);
|
362 |
+
-webkit-background-clip: text;
|
363 |
+
-webkit-text-fill-color: transparent;
|
364 |
+
font-weight: 700;
|
365 |
+
}
|
366 |
+
|
367 |
+
/* Pulsing animation */
|
368 |
+
@keyframes pulse {
|
369 |
+
0% { transform: scale(1); }
|
370 |
+
50% { transform: scale(1.05); }
|
371 |
+
100% { transform: scale(1); }
|
372 |
+
}
|
373 |
+
|
374 |
+
.pulse-animation {
|
375 |
+
animation: pulse 2s infinite;
|
376 |
+
}
|
377 |
+
|
378 |
+
/* Custom radio buttons */
|
379 |
+
.stRadio > div {
|
380 |
+
display: flex;
|
381 |
+
gap: 10px;
|
382 |
+
}
|
383 |
+
|
384 |
+
.stRadio label {
|
385 |
+
cursor: pointer;
|
386 |
+
background-color: #f8f9fa;
|
387 |
+
padding: 0.5rem 1rem;
|
388 |
+
border-radius: 50px;
|
389 |
+
transition: all 0.3s ease;
|
390 |
+
}
|
391 |
+
|
392 |
+
.stRadio label:hover {
|
393 |
+
background-color: #e9ecef;
|
394 |
+
}
|
395 |
+
|
396 |
+
/* Hide default radio button */
|
397 |
+
.stRadio input {
|
398 |
+
display: none;
|
399 |
+
}
|
400 |
+
|
401 |
+
/* Custom checked state */
|
402 |
+
.stRadio input:checked + label {
|
403 |
+
background-color: #1a8754;
|
404 |
+
color: white;
|
405 |
+
}
|
406 |
+
|
407 |
+
.stSelectbox, .stNumberInput {
|
408 |
+
background-color: #f0f2f6;
|
409 |
+
border-radius: 10px;
|
410 |
+
padding: 10px;
|
411 |
+
margin: 10px 0;
|
412 |
+
}
|
413 |
+
|
414 |
+
.custom-card {
|
415 |
+
background-color: white;
|
416 |
+
padding: 20px;
|
417 |
+
border-radius: 15px;
|
418 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
419 |
+
margin: 10px 0;
|
420 |
+
}
|
421 |
+
|
422 |
+
.metric-container {
|
423 |
+
display: flex;
|
424 |
+
justify-content: space-between;
|
425 |
+
flex-wrap: wrap;
|
426 |
+
}
|
427 |
+
|
428 |
+
.metric-card {
|
429 |
+
background-color: #1a8754;
|
430 |
+
color: white;
|
431 |
+
padding: 15px;
|
432 |
+
border-radius: 10px;
|
433 |
+
margin: 5px;
|
434 |
+
flex: 1;
|
435 |
+
min-width: 200px;
|
436 |
+
text-align: center;
|
437 |
+
}
|
438 |
+
|
439 |
+
/* Button styling */
|
440 |
+
.stButton>button {
|
441 |
+
border-radius: 50px;
|
442 |
+
padding: 0.5rem 1.5rem;
|
443 |
+
font-weight: 600;
|
444 |
+
transition: all 0.3s ease;
|
445 |
+
border: none;
|
446 |
+
}
|
447 |
+
|
448 |
+
.stButton>button:hover {
|
449 |
+
transform: translateY(-2px);
|
450 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
451 |
+
}
|
452 |
+
|
453 |
+
.primary-btn {
|
454 |
+
background: linear-gradient(90deg, #1a8754 0%, #115740 100%);
|
455 |
+
color: white;
|
456 |
+
}
|
457 |
+
|
458 |
+
.secondary-btn {
|
459 |
+
background: white;
|
460 |
+
color: #1a8754;
|
461 |
+
border: 1px solid #1a8754 !important;
|
462 |
+
}
|
463 |
+
|
464 |
+
/* Footer styling */
|
465 |
+
footer {
|
466 |
+
position: fixed;
|
467 |
+
left: 0;
|
468 |
+
bottom: 0;
|
469 |
+
width: 100%;
|
470 |
+
background-color: #1a8754;
|
471 |
+
color: white;
|
472 |
+
text-align: center;
|
473 |
+
padding: 10px 0;
|
474 |
+
font-family: 'Vazirmatn', sans-serif;
|
475 |
+
}
|
476 |
+
</style>
|
477 |
+
""", unsafe_allow_html=True)
|
478 |
+
|
479 |
+
# Load real farm data from CSV
|
480 |
+
@st.cache_data
|
481 |
+
def load_farm_data():
|
482 |
+
try:
|
483 |
+
df = pd.read_csv("کراپ لاگ کلی (1).csv")
|
484 |
+
# Rename columns for consistency with the program
|
485 |
+
df.rename(columns={
|
486 |
+
'سال': 'Year',
|
487 |
+
'هفته': 'Week',
|
488 |
+
'مزرعه': 'Farm_ID',
|
489 |
+
'کانال': 'Channel',
|
490 |
+
'اداره': 'Administration',
|
491 |
+
'مساحت': 'Area',
|
492 |
+
'مساحت زیر مجموعه': 'SubArea',
|
493 |
+
'رقم': 'Variety',
|
494 |
+
'سن': 'Age',
|
495 |
+
'ایستگاه 1': 'Station1',
|
496 |
+
'ایستگاه 2': 'Station2',
|
497 |
+
'ایستگاه 3': 'Station3',
|
498 |
+
'ایستگاه 4': 'Station4',
|
499 |
+
'ایستگاه 5': 'Station5',
|
500 |
+
'ارتفاع هفته جاری مزرعه': 'CurrentHeight',
|
501 |
+
'ارتفاع هفته گذشته مزرعه': 'PreviousHeight',
|
502 |
+
'رشد هفته جاری': 'CurrentGrowth',
|
503 |
+
'رشد هفته گذشته': 'PreviousGrowth',
|
504 |
+
'نیتروژن فعلی': 'CurrentNitrogen',
|
505 |
+
'نیتروژن استاندارد فعلی': 'StandardNitrogen',
|
506 |
+
'نیتروژن قبلی': 'PreviousNitrogen',
|
507 |
+
'نیتروژن استاندارد قبلی': 'PreviousStandardNitrogen',
|
508 |
+
'رطوبت غلاف فعلی': 'CurrentMoisture',
|
509 |
+
'رطوبت استاندارد فعلی': 'StandardMoisture',
|
510 |
+
'رطوبت غلاف قبلی': 'PreviousMoisture',
|
511 |
+
'رطوبت استاندارد قبلی': 'PreviousStandardMoisture',
|
512 |
+
'چاهک 1': 'Well1',
|
513 |
+
'تاریخ قرائت': 'Well1Date',
|
514 |
+
'چاهک 2': 'Well2',
|
515 |
+
'تاریخ قرائت.1': 'Well2Date'
|
516 |
+
}, inplace=True)
|
517 |
+
return df
|
518 |
+
except Exception as e:
|
519 |
+
st.error(f"خطا در بارگذاری دادههای مزارع: {e}")
|
520 |
+
return pd.DataFrame()
|
521 |
+
|
522 |
+
@st.cache_data
|
523 |
+
def load_coordinates_data():
|
524 |
+
try:
|
525 |
+
coords_df = pd.read_csv("farm_coordinates.csv")
|
526 |
+
coords_df.rename(columns={
|
527 |
+
'مزرعه': 'Farm_ID',
|
528 |
+
'عرض جغرافیایی': 'Latitude',
|
529 |
+
'طول جغرافیایی': 'Longitude'
|
530 |
+
}, inplace=True)
|
531 |
+
return coords_df
|
532 |
+
except Exception as e:
|
533 |
+
st.error(f"خطا در بارگذاری دادههای مختصات: {e}")
|
534 |
+
return pd.DataFrame()
|
535 |
+
|
536 |
+
@st.cache_data
|
537 |
+
def load_day_data():
|
538 |
+
try:
|
539 |
+
day_df = pd.read_csv("پایگاه داده (1).csv")
|
540 |
+
day_df.rename(columns={
|
541 |
+
'مزرعه': 'Farm_ID',
|
542 |
+
'روز': 'Day'
|
543 |
+
}, inplace=True)
|
544 |
+
return day_df
|
545 |
+
except Exception as e:
|
546 |
+
st.error(f"خطا در بارگذاری دادههای روزهای هفته: {e}")
|
547 |
+
return pd.DataFrame()
|
548 |
|
549 |
+
# Load animation JSON
|
550 |
+
@st.cache_data
|
551 |
+
def load_lottie_url(url: str):
|
552 |
+
r = requests.get(url)
|
553 |
+
if r.status_code != 200:
|
554 |
+
return None
|
555 |
+
return r.json()
|
556 |
+
|
557 |
+
# Initialize Earth Engine (unchanged for now, but can be used with real data)
|
558 |
@st.cache_resource
|
559 |
+
def initialize_earth_engine():
|
560 |
+
try:
|
561 |
+
service_account = 'dehkhodamap-e9f0da4ce9f6514021@ee-esmaeilkiani13877.iam.gserviceaccount.com'
|
562 |
+
credentials_dict = {
|
|
|
|
|
|
|
563 |
"type": "service_account",
|
564 |
"project_id": "ee-esmaeilkiani13877",
|
565 |
"private_key_id": "cfdea6eaf4115cb6462626743e4b15df85fd0c7f",
|
|
|
572 |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dehkhodamap-e9f0da4ce9f6514021%40ee-esmaeilkiani13877.iam.gserviceaccount.com",
|
573 |
"universe_domain": "googleapis.com"
|
574 |
}
|
575 |
+
credentials_file = 'ee-esmaeilkiani13877-cfdea6eaf411.json'
|
576 |
+
with open(credentials_file, 'w') as f:
|
577 |
+
json.dump(credentials_dict, f)
|
578 |
+
credentials = ee.ServiceAccountCredentials(service_account, credentials_file)
|
579 |
+
ee.Initialize(credentials)
|
580 |
+
os.remove(credentials_file)
|
581 |
+
return True
|
582 |
+
except Exception as e:
|
583 |
+
st.error(f"خطا در اتصال به Earth Engine: {e}")
|
584 |
+
return False
|
585 |
|
586 |
+
# Create Earth Engine map with indices
|
587 |
+
def create_ee_map(farm_id, date_str, layer_type="NDVI"):
|
588 |
+
try:
|
589 |
+
farm_row = coordinates_df[coordinates_df['Farm_ID'] == farm_id].iloc[0]
|
590 |
+
lat, lon = farm_row['Latitude'], farm_row['Longitude']
|
591 |
+
m = folium.Map(location=[lat, lon], zoom_start=14, tiles='CartoDB positron')
|
592 |
+
date_obj = datetime.strptime(date_str, '%Y-%m-%d')
|
593 |
+
start_date = (date_obj - timedelta(days=5)).strftime('%Y-%m-%d')
|
594 |
+
end_date = (date_obj + timedelta(days=5)).strftime('%Y-%m-%d')
|
595 |
+
region = ee.Geometry.Point([lon, lat]).buffer(1500)
|
596 |
+
s2 = ee.ImageCollection('COPERNICUS/S2_SR') \
|
597 |
+
.filterDate(start_date, end_date) \
|
598 |
+
.filterBounds(region) \
|
599 |
+
.sort('CLOUDY_PIXEL_PERCENTAGE') \
|
600 |
+
.first()
|
601 |
+
if layer_type == "NDVI":
|
602 |
+
index = s2.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
603 |
+
viz_params = {'min': -0.2, 'max': 0.8, 'palette': ['#ff0000', '#ff4500', '#ffd700', '#32cd32', '#006400']}
|
604 |
+
legend_title = 'شاخص پوشش گیاهی (NDVI)'
|
605 |
+
elif layer_type == "NDMI":
|
606 |
+
index = s2.normalizedDifference(['B8', 'B11']).rename('NDMI')
|
607 |
+
viz_params = {'min': -0.5, 'max': 0.5, 'palette': ['#8b0000', '#ff8c00', '#00ced1', '#00b7eb', '#00008b']}
|
608 |
+
legend_title = 'شاخص رطوبت (NDMI)'
|
609 |
+
elif layer_type == "EVI":
|
610 |
+
nir = s2.select('B8')
|
611 |
+
red = s2.select('B4')
|
612 |
+
blue = s2.select('B2')
|
613 |
+
index = nir.subtract(red).multiply(2.5).divide(nir.add(red.multiply(6)).subtract(blue.multiply(7.5)).add(1)).rename('EVI')
|
614 |
+
viz_params = {'min': 0, 'max': 1, 'palette': ['#d73027', '#f46d43', '#fdae61', '#fee08b', '#4caf50']}
|
615 |
+
legend_title = 'شاخص پیشرفته گیاهی (EVI)'
|
616 |
+
elif layer_type == "NDWI":
|
617 |
+
index = s2.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
618 |
+
viz_params = {'min': -0.5, 'max': 0.5, 'palette': ['#00008b', '#00b7eb', '#add8e6', '#fdae61', '#d73027']}
|
619 |
+
legend_title = 'شاخص آب (NDWI)'
|
620 |
+
map_id_dict = ee.Image(index).getMapId(viz_params)
|
621 |
+
folium.TileLayer(
|
622 |
+
tiles=map_id_dict['tile_fetcher'].url_format,
|
623 |
+
attr='Google Earth Engine',
|
624 |
+
name=layer_type,
|
625 |
+
overlay=True,
|
626 |
+
control=True
|
627 |
+
).add_to(m)
|
628 |
+
folium.Marker(
|
629 |
+
[lat, lon],
|
630 |
+
popup=f'مزرعه {farm_id}',
|
631 |
+
tooltip=f'م��رعه {farm_id}',
|
632 |
+
icon=folium.Icon(color='green', icon='leaf')
|
633 |
+
).add_to(m)
|
634 |
+
folium.Circle(
|
635 |
+
[lat, lon],
|
636 |
+
radius=1500,
|
637 |
+
color='green',
|
638 |
+
fill=True,
|
639 |
+
fill_color='green',
|
640 |
+
fill_opacity=0.1
|
641 |
+
).add_to(m)
|
642 |
+
folium.LayerControl().add_to(m)
|
643 |
+
legend_html = '''
|
644 |
+
<div style="position: fixed;
|
645 |
+
bottom: 50px; right: 50px;
|
646 |
+
border: 2px solid grey; z-index: 9999;
|
647 |
+
background-color: white;
|
648 |
+
padding: 10px;
|
649 |
+
border-radius: 5px;
|
650 |
+
direction: rtl;
|
651 |
+
font-family: 'Vazirmatn', sans-serif;">
|
652 |
+
<div style="font-size: 14px; font-weight: bold; margin-bottom: 5px;">''' + legend_title + '''</div>
|
653 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
654 |
+
<div style="background: ''' + viz_params['palette'][0] + '''; width: 20px; height: 20px; margin-left: 5px;"></div>
|
655 |
+
<span>کم</span>
|
656 |
+
</div>
|
657 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
658 |
+
<div style="background: ''' + viz_params['palette'][2] + '''; width: 20px; height: 20px; margin-left: 5px;"></div>
|
659 |
+
<span>متوسط</span>
|
660 |
+
</div>
|
661 |
+
<div style="display: flex; align-items: center;">
|
662 |
+
<div style="background: ''' + viz_params['palette'][-1] + '''; width: 20px; height: 20px; margin-left: 5px;"></div>
|
663 |
+
<span>زیاد</span>
|
664 |
+
</div>
|
665 |
+
</div>
|
666 |
+
'''
|
667 |
+
m.get_root().html.add_child(folium.Element(legend_html))
|
668 |
+
return m
|
669 |
+
except Exception as e:
|
670 |
+
st.error(f"خطا در ایجاد نقشه: {e}")
|
671 |
+
return None
|
672 |
|
673 |
+
# Calculate real farm stats
|
674 |
+
def calculate_farm_stats(farm_id, layer_type="NDVI"):
|
675 |
+
farm_data = farm_df[farm_df['Farm_ID'] == farm_id]
|
676 |
+
if layer_type == "NDVI":
|
677 |
+
stats = {
|
678 |
+
'mean': farm_data['CurrentHeight'].mean() if not farm_data.empty else 0,
|
679 |
+
'min': farm_data['CurrentHeight'].min() if not farm_data.empty else 0,
|
680 |
+
'max': farm_data['CurrentHeight'].max() if not farm_data.empty else 0,
|
681 |
+
'std_dev': farm_data['CurrentHeight'].std() if not farm_data.empty else 0,
|
682 |
+
'histogram_data': farm_data['CurrentHeight'].values if not farm_data.empty else np.array([])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
683 |
}
|
684 |
+
elif layer_type == "NDMI":
|
685 |
+
stats = {
|
686 |
+
'mean': farm_data['CurrentMoisture'].mean() if not farm_data.empty else 0,
|
687 |
+
'min': farm_data['CurrentMoisture'].min() if not farm_data.empty else 0,
|
688 |
+
'max': farm_data['CurrentMoisture'].max() if not farm_data.empty else 0,
|
689 |
+
'std_dev': farm_data['CurrentMoisture'].std() if not farm_data.empty else 0,
|
690 |
+
'histogram_data': farm_data['CurrentMoisture'].values if not farm_data.empty else np.array([])
|
691 |
+
}
|
692 |
+
return stats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
693 |
|
694 |
+
# Generate real growth data
|
695 |
+
def generate_real_growth_data(selected_variety="all", selected_age="all"):
|
696 |
+
filtered_farms = farm_df
|
697 |
+
if selected_variety != "all":
|
698 |
+
filtered_farms = filtered_farms[filtered_farms['Variety'] == selected_variety]
|
699 |
+
if selected_age != "all":
|
700 |
+
filtered_farms = filtered_farms[filtered_farms['Age'] == selected_age]
|
701 |
+
|
702 |
+
farm_growth_data = []
|
703 |
+
weeks = filtered_farms['Week'].unique()
|
704 |
+
for farm_id in filtered_farms['Farm_ID'].unique():
|
705 |
+
farm_data = filtered_farms[filtered_farms['Farm_ID'] == farm_id]
|
706 |
+
growth_data = {
|
707 |
+
'farm_id': farm_id,
|
708 |
+
'variety': farm_data['Variety'].iloc[0] if not farm_data.empty else 'Unknown',
|
709 |
+
'age': farm_data['Age'].iloc[0] if not farm_data.empty else 'Unknown',
|
710 |
+
'weeks': weeks,
|
711 |
+
'heights': [farm_data[farm_data['Week'] == week]['CurrentHeight'].mean() if not farm_data[farm_data['Week'] == week].empty else 0 for week in weeks]
|
712 |
}
|
713 |
+
farm_growth_data.append(growth_data)
|
714 |
+
|
715 |
+
if farm_growth_data:
|
716 |
+
avg_heights = []
|
717 |
+
for week in weeks:
|
718 |
+
week_heights = [farm['heights'][list(weeks).index(week)] for farm in farm_growth_data if farm['heights'][list(weeks).index(week)] > 0]
|
719 |
+
avg_heights.append(round(sum(week_heights) / len(week_heights)) if week_heights else 0)
|
720 |
|
721 |
+
avg_growth_data = {
|
722 |
+
'farm_id': 'میانگین',
|
723 |
+
'variety': 'همه',
|
724 |
+
'age': 'همه',
|
725 |
+
'weeks': weeks,
|
726 |
+
'heights': avg_heights
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
727 |
}
|
728 |
+
return {'individual': farm_growth_data, 'average': avg_growth_data}
|
729 |
+
return {
|
730 |
+
'individual': [],
|
731 |
+
'average': {'farm_id': 'میانگین', 'variety': 'همه', 'age': 'همه', 'weeks': weeks, 'heights': [0] * len(weeks)}
|
732 |
+
}
|
733 |
|
734 |
+
# Initialize Earth Engine and load data
|
735 |
+
ee_initialized = initialize_earth_engine()
|
736 |
+
farm_df = load_farm_data()
|
737 |
+
coordinates_df = load_coordinates_data()
|
738 |
+
day_df = load_day_data()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
739 |
|
740 |
+
# Load animations
|
741 |
+
lottie_farm = load_lottie_url('https://assets5.lottiefiles.com/packages/lf20_ystsffqy.json')
|
742 |
+
lottie_analysis = load_lottie_url('https://assets3.lottiefiles.com/packages/lf20_qp1q7mct.json')
|
743 |
+
lottie_report = load_lottie_url('https://assets9.lottiefiles.com/packages/lf20_vwcugezu.json')
|
744 |
|
745 |
+
# Create session state for storing data
|
746 |
+
if 'heights_df' not in st.session_state:
|
747 |
+
st.session_state.heights_df = farm_df.copy()
|
748 |
+
|
749 |
+
# Main header
|
750 |
+
st.markdown('<div class="main-header">', unsafe_allow_html=True)
|
751 |
+
st.markdown('<h1>سامانه هوشمند پایش مزارع نیشکر دهخدا</h1>', unsafe_allow_html=True)
|
752 |
+
st.markdown('<p>پلتفرم جامع مدیریت، پایش و تحلیل دادههای مزارع نیشکر با استفاده از تصاویر ماهوارهای و هوش مصنوعی</p>', unsafe_allow_html=True)
|
753 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
754 |
+
|
755 |
+
# Create a modern navigation menu
|
756 |
+
selected = option_menu(
|
757 |
+
menu_title=None,
|
758 |
+
options=["داشبورد", "نقشه مزارع", "ورود اطلاعات", "تحلیل دادهها", "گزارشگیری", "تنظیمات"],
|
759 |
+
icons=["speedometer2", "map", "pencil-square", "graph-up", "file-earmark-text", "gear"],
|
760 |
+
menu_icon="cast",
|
761 |
+
default_index=0,
|
762 |
+
orientation="horizontal",
|
763 |
+
styles={
|
764 |
+
"container": {"padding": "0!important", "background-color": "transparent", "margin-bottom": "20px"},
|
765 |
+
"icon": {"color": "#1a8754", "font-size": "18px"},
|
766 |
+
"nav-link": {"font-size": "16px", "text-align": "center", "margin":"0px", "--hover-color": "#e9f7ef", "border-radius": "10px"},
|
767 |
+
"nav-link-selected": {"background-color": "#1a8754", "color": "white", "font-weight": "600"},
|
768 |
+
}
|
769 |
+
)
|
770 |
+
|
771 |
+
# Dashboard
|
772 |
+
if selected == "داشبورد":
|
773 |
+
# Dashboard metrics
|
774 |
+
col1, col2, col3, col4 = st.columns(4)
|
775 |
|
776 |
+
with col1:
|
777 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
778 |
+
st.markdown(f'<div class="metric-value">{len(farm_df["Farm_ID"].unique())}</div>', unsafe_allow_html=True)
|
779 |
+
st.markdown('<div class="metric-label">تعداد مزارع</div>', unsafe_allow_html=True)
|
780 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
781 |
|
782 |
+
with col2:
|
783 |
+
active_farms = int(len(farm_df["Farm_ID"].unique()) * 0.85)
|
784 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
785 |
+
st.markdown(f'<div class="metric-value">{active_farms}</div>', unsafe_allow_html=True)
|
786 |
+
st.markdown('<div class="metric-label">مزارع فعال</div>', unsafe_allow_html=True)
|
787 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
788 |
|
789 |
+
with col3:
|
790 |
+
avg_height = farm_df['CurrentHeight'].mean()
|
791 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
792 |
+
st.markdown(f'<div class="metric-value">{avg_height:.1f} cm</div>', unsafe_allow_html=True)
|
793 |
+
st.markdown('<div class="metric-label">میانگین ارتفاع</div>', unsafe_allow_html=True)
|
794 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
795 |
|
796 |
+
with col4:
|
797 |
+
avg_moisture = farm_df['CurrentMoisture'].mean()
|
798 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
799 |
+
st.markdown(f'<div class="metric-value">{avg_moisture:.1f}%</div>', unsafe_allow_html=True)
|
800 |
+
st.markdown('<div class="metric-label">میانگین رطوبت</div>', unsafe_allow_html=True)
|
801 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
802 |
|
803 |
+
# Dashboard tabs
|
804 |
+
tab1, tab2, tab3, tab4 = st.tabs(["نمای کلی", "نقشه مزارع", "نمودارها", "دادهها"])
|
|
|
805 |
|
806 |
+
with tab1:
|
807 |
+
st.markdown("### توزیع واریتهها و سن محصول")
|
808 |
+
|
809 |
+
col1, col2 = st.columns(2)
|
810 |
+
|
811 |
+
with col1:
|
812 |
+
variety_counts = farm_df['Variety'].value_counts().reset_index()
|
813 |
+
variety_counts.columns = ['Variety', 'Count']
|
814 |
+
fig = px.pie(
|
815 |
+
variety_counts,
|
816 |
+
values='Count',
|
817 |
+
names='Variety',
|
818 |
+
title='توزیع واریتهها',
|
819 |
+
color_discrete_sequence=px.colors.sequential.Greens_r
|
820 |
+
)
|
821 |
+
fig.update_traces(textposition='inside', textinfo='percent+label')
|
822 |
+
fig.update_layout(
|
823 |
+
font=dict(family="Vazirmatn"),
|
824 |
+
legend=dict(orientation="h", yanchor="bottom", y=-0.3, xanchor="center", x=0.5)
|
825 |
+
)
|
826 |
+
st.plotly_chart(fig, use_container_width=True)
|
827 |
+
|
828 |
+
with col2:
|
829 |
+
age_counts = farm_df['Age'].value_counts().reset_index()
|
830 |
+
age_counts.columns = ['Age', 'Count']
|
831 |
+
fig = px.pie(
|
832 |
+
age_counts,
|
833 |
+
values='Count',
|
834 |
+
names='Age',
|
835 |
+
title='توزیع سن محصول',
|
836 |
+
color_discrete_sequence=px.colors.sequential.Blues_r
|
837 |
+
)
|
838 |
+
fig.update_traces(textposition='inside', textinfo='percent+label')
|
839 |
+
fig.update_layout(
|
840 |
+
font=dict(family="Vazirmatn"),
|
841 |
+
legend=dict(orientation="h", yanchor="bottom", y=-0.3, xanchor="center", x=0.5)
|
842 |
+
)
|
843 |
+
st.plotly_chart(fig, use_container_width=True)
|
844 |
+
|
845 |
+
st.markdown("### اطلاعات کلی مزارع")
|
846 |
+
|
847 |
+
total_area = farm_df['Area'].sum()
|
848 |
+
|
849 |
+
col1, col2, col3 = st.columns(3)
|
850 |
+
col1.metric("تعداد کل مزارع", f"{len(farm_df['Farm_ID'].unique())}")
|
851 |
+
col2.metric("مساحت کل (هکتار)", f"{total_area:.2f}")
|
852 |
+
col3.metric("تعداد کانالها", f"{farm_df['Channel'].nunique()}")
|
853 |
+
|
854 |
+
st.markdown('<hr style="height:2px;border:none;color:#1a8754;background-color:#1a8754;margin:30px 0;">', unsafe_allow_html=True)
|
855 |
+
|
856 |
+
st_lottie(lottie_farm, height=300, key="farm_animation")
|
857 |
|
858 |
+
with tab2:
|
859 |
+
st.markdown("### نقشه مزارع")
|
860 |
+
|
861 |
+
if coordinates_df is not None and not coordinates_df.empty:
|
862 |
+
m = folium.Map(location=[31.45, 48.72], zoom_start=12, tiles='CartoDB positron')
|
863 |
+
for _, farm in coordinates_df.iterrows():
|
864 |
+
lat = farm['Latitude']
|
865 |
+
lon = farm['Longitude']
|
866 |
+
name = farm['Farm_ID']
|
867 |
+
farm_info = farm_df[farm_df['Farm_ID'] == name]
|
868 |
+
if not farm_info.empty:
|
869 |
+
variety = farm_info['Variety'].iloc[0]
|
870 |
+
age = farm_info['Age'].iloc[0]
|
871 |
+
area = farm_info['Area'].iloc[0]
|
872 |
+
popup_text = f"""
|
873 |
+
<div style="direction: rtl; text-align: right; font-family: 'Vazirmatn', sans-serif;">
|
874 |
+
<h4>مزرعه {name}</h4>
|
875 |
+
<p>واریته: {variety}</p>
|
876 |
+
<p>سن: {age}</p>
|
877 |
+
<p>مساحت: {area} هکتار</p>
|
878 |
+
</div>
|
879 |
+
"""
|
880 |
+
else:
|
881 |
+
popup_text = f"<div style='direction: rtl;'>مزرعه {name}</div>"
|
882 |
+
folium.Marker(
|
883 |
+
[lat, lon],
|
884 |
+
popup=folium.Popup(popup_text, max_width=300),
|
885 |
+
tooltip=f"مزرعه {name}",
|
886 |
+
icon=folium.Icon(color='green', icon='leaf')
|
887 |
+
).add_to(m)
|
888 |
+
st.markdown('<div class="map-container">', unsafe_allow_html=True)
|
889 |
+
folium_static(m, width=1000, height=600)
|
890 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
891 |
+
else:
|
892 |
+
st.warning("دادههای مختصات در دسترس نیست.")
|
893 |
|
894 |
+
with tab3:
|
895 |
+
st.markdown("### نمودار رشد هفتگی")
|
|
|
|
|
896 |
|
897 |
+
col1, col2 = st.columns(2)
|
898 |
+
with col1:
|
899 |
+
selected_variety = st.selectbox(
|
900 |
+
"انتخاب واریته",
|
901 |
+
["all"] + list(farm_df['Variety'].unique()),
|
902 |
+
format_func=lambda x: "همه واریتهها" if x == "all" else x
|
903 |
+
)
|
904 |
|
905 |
+
with col2:
|
906 |
+
selected_age = st.selectbox(
|
907 |
+
"انتخاب سن",
|
908 |
+
["all"] + list(farm_df['Age'].unique()),
|
909 |
+
format_func=lambda x: "همه سنین" if x == "all" else x
|
910 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
911 |
|
912 |
+
growth_data = generate_real_growth_data(selected_variety, selected_age)
|
913 |
+
|
914 |
+
chart_tab1, chart_tab2 = st.tabs(["میانگین رشد", "رشد مزارع فردی"])
|
915 |
+
|
916 |
+
with chart_tab1:
|
917 |
+
avg_data = growth_data['average']
|
918 |
+
fig = go.Figure()
|
919 |
+
fig.add_trace(go.Scatter(
|
920 |
+
x=avg_data['weeks'],
|
921 |
+
y=avg_data['heights'],
|
922 |
+
mode='lines+markers',
|
923 |
+
name='میانگین رشد',
|
924 |
+
line=dict(color='#1a8754', width=3),
|
925 |
+
marker=dict(size=8, color='#1a8754')
|
926 |
+
))
|
927 |
+
fig.update_layout(
|
928 |
+
title='میانگین رشد هفتگی',
|
929 |
+
xaxis_title='هفته',
|
930 |
+
yaxis_title='ارتفاع (سانتیمتر)',
|
931 |
+
font=dict(family='Vazirmatn', size=14),
|
932 |
+
hovermode='x unified',
|
933 |
+
template='plotly_white',
|
934 |
+
height=500
|
935 |
+
)
|
936 |
+
st.plotly_chart(fig, use_container_width=True)
|
937 |
+
|
938 |
+
with chart_tab2:
|
939 |
+
if growth_data['individual']:
|
940 |
+
fig = go.Figure()
|
941 |
+
colors = ['#1a8754', '#1976d2', '#e65100', '#9c27b0', '#d32f2f']
|
942 |
+
for i, farm_data in enumerate(growth_data['individual'][:5]):
|
943 |
+
fig.add_trace(go.Scatter(
|
944 |
+
x=farm_data['weeks'],
|
945 |
+
y=farm_data['heights'],
|
946 |
+
mode='lines+markers',
|
947 |
+
name=f"مزرعه {farm_data['farm_id']}",
|
948 |
+
line=dict(color=colors[i % len(colors)], width=2),
|
949 |
+
marker=dict(size=6, color=colors[i % len(colors)])
|
950 |
+
))
|
951 |
+
fig.update_layout(
|
952 |
+
title='رشد هفتگی مزارع فردی',
|
953 |
+
xaxis_title='هفته',
|
954 |
+
yaxis_title='ارتفاع (سانتیمتر)',
|
955 |
+
font=dict(family='Vazirmatn', size=14),
|
956 |
+
hovermode='x unified',
|
957 |
+
template='plotly_white',
|
958 |
+
height=500
|
959 |
+
)
|
960 |
+
st.plotly_chart(fig, use_container_width=True)
|
961 |
+
else:
|
962 |
+
st.warning("دادهای برای نمایش وجود ندارد.")
|
963 |
|
964 |
+
with tab4:
|
965 |
+
st.markdown("### دادههای مزارع")
|
966 |
+
|
967 |
+
search_term = st.text_input("جستجو در دادهها", placeholder="نام مزرعه، واریته، سن و...")
|
968 |
+
|
969 |
+
if search_term:
|
970 |
+
filtered_df = farm_df[
|
971 |
+
farm_df['Farm_ID'].astype(str).str.contains(search_term) |
|
972 |
+
farm_df['Variety'].astype(str).str.contains(search_term) |
|
973 |
+
farm_df['Age'].astype(str).str.contains(search_term) |
|
974 |
+
farm_df['Channel'].astype(str).str.contains(search_term)
|
975 |
+
]
|
976 |
+
else:
|
977 |
+
filtered_df = farm_df
|
978 |
+
|
979 |
+
if not filtered_df.empty:
|
980 |
+
csv = filtered_df.to_csv(index=False).encode('utf-8')
|
981 |
+
st.download_button(
|
982 |
+
label="دانلود دادهها (CSV)",
|
983 |
+
data=csv,
|
984 |
+
file_name="farm_data.csv",
|
985 |
+
mime="text/csv",
|
986 |
+
)
|
987 |
+
st.dataframe(
|
988 |
+
filtered_df,
|
989 |
+
use_container_width=True,
|
990 |
+
height=400,
|
991 |
+
hide_index=True
|
992 |
+
)
|
993 |
+
st.info(f"نمایش {len(filtered_df)} مزرعه از {len(farm_df)} مزرعه")
|
994 |
+
else:
|
995 |
+
st.warning("هیچ دادهای یافت نشد.")
|
996 |
+
|
997 |
+
# Map Page
|
998 |
+
elif selected == "نقشه مزارع":
|
999 |
+
st.markdown("## نقشه مزارع با شاخصهای ماهوارهای")
|
1000 |
|
1001 |
+
col1, col2 = st.columns([1, 3])
|
|
|
|
|
|
|
|
|
|
|
|
|
1002 |
|
1003 |
+
with col1:
|
1004 |
+
st.markdown('<div class="glass-card">', unsafe_allow_html=True)
|
1005 |
+
st.markdown("### تنظیمات نقشه")
|
1006 |
+
|
1007 |
+
selected_farm = st.selectbox(
|
1008 |
+
"انتخاب مزرعه",
|
1009 |
+
options=coordinates_df['Farm_ID'].tolist(),
|
1010 |
+
index=0,
|
1011 |
+
format_func=lambda x: f"مزرعه {x}"
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
selected_date = st.date_input(
|
1015 |
+
"انتخاب تاریخ",
|
1016 |
+
value=datetime.now(),
|
1017 |
+
format="YYYY-MM-DD"
|
1018 |
+
)
|
1019 |
+
|
1020 |
+
selected_layer = st.selectbox(
|
1021 |
+
"انتخاب شاخص",
|
1022 |
+
options=["NDVI", "NDMI", "EVI", "NDWI"],
|
1023 |
+
format_func=lambda x: {
|
1024 |
+
"NDVI": "شاخص پوشش گیاهی (NDVI)",
|
1025 |
+
"NDMI": "شاخص رطوبت (NDMI)",
|
1026 |
+
"EVI": "شاخص پیشرفته گیاهی (EVI)",
|
1027 |
+
"NDWI": "شاخص آب (NDWI)"
|
1028 |
+
}[x]
|
1029 |
+
)
|
1030 |
+
|
1031 |
+
generate_map = st.button(
|
1032 |
+
"تولید نقشه",
|
1033 |
+
type="primary",
|
1034 |
+
use_container_width=True
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
st.markdown('<hr style="margin: 20px 0;">', unsafe_allow_html=True)
|
1038 |
+
|
1039 |
+
st.markdown("### راهنمای شاخصها")
|
1040 |
+
|
1041 |
+
with st.expander("شاخص پوشش گیاهی (NDVI)", expanded=selected_layer == "NDVI"):
|
1042 |
+
st.markdown("""
|
1043 |
+
**شاخص تفاضل نرم��لشده پوشش گیاهی (NDVI)** معیاری برای سنجش سلامت و تراکم پوشش گیاهی است.
|
1044 |
|
1045 |
+
- **مقادیر بالا (0.6 تا 1.0)**: پوشش گیاهی متراکم و سالم
|
1046 |
+
- **مقادیر متوسط (0.2 تا 0.6)**: پوشش گیاهی متوسط
|
1047 |
+
- **مقادیر پایین (-1.0 تا 0.2)**: پوشش گیاهی کم یا خاک لخت
|
1048 |
|
1049 |
+
فرمول: NDVI = (NIR - RED) / (NIR + RED)
|
1050 |
+
""")
|
1051 |
+
|
1052 |
+
with st.expander("شاخص رطوبت (NDMI)", expanded=selected_layer == "NDMI"):
|
1053 |
+
st.markdown("""
|
1054 |
+
**شاخص تفاضل نرمالشده رطوبت (NDMI)** برای ارزیابی محتوای رطوبت گیاهان استفاده میشود.
|
1055 |
|
1056 |
+
- **مقادیر بالا (0.4 تا 1.0)**: محتوای رطوبت بالا
|
1057 |
+
- **مقادیر متوسط (0.0 تا 0.4)**: محتوای رطوبت متوسط
|
1058 |
+
- **مقادیر پایین (-1.0 تا 0.0)**: محتوای رطوبت کم
|
1059 |
|
1060 |
+
فرمول: NDMI = (NIR - SWIR) / (NIR + SWIR)
|
1061 |
+
""")
|
1062 |
+
|
1063 |
+
with st.expander("شاخص پیشرفته گیاهی (EVI)", expanded=selected_layer == "EVI"):
|
1064 |
+
st.markdown("""
|
1065 |
+
**شاخص پیشرفته پوشش گیاهی (EVI)** نسخه بهبودیافته NDVI است که حساسیت کمتری به اثرات خاک و اتمسفر دارد.
|
1066 |
|
1067 |
+
- **مقادیر بالا (0.4 تا 1.0)**: پوشش گیاهی متراکم و سالم
|
1068 |
+
- **مقادیر متوسط (0.2 تا 0.4)**: پوشش گیاهی متوسط
|
1069 |
+
- **مقادیر پایین (0.0 تا 0.2)**: پوشش گیاهی کم
|
|
|
|
|
|
|
|
|
|
|
|
|
1070 |
|
1071 |
+
فرمول: EVI = 2.5 * ((NIR - RED) / (NIR + 6*RED - 7.5*BLUE + 1))
|
1072 |
+
""")
|
1073 |
+
|
1074 |
+
with st.expander("شاخص آب (NDWI)", expanded=selected_layer == "NDWI"):
|
1075 |
+
st.markdown("""
|
1076 |
+
**شاخص تفاضل نرمالشده آب (NDWI)** برای شناسایی پهنههای آبی و ارزیابی محتوای آب در گیاهان استفاده میشود.
|
|
|
|
|
|
|
1077 |
|
1078 |
+
- **مقادیر بالا (0.3 تا 1.0)**: پهنههای آبی
|
1079 |
+
- **مقادیر متوسط (0.0 تا 0.3)**: محتوای آب متوسط
|
1080 |
+
- **مقادیر پایین (-1.0 تا 0.0)**: محتوای آب کم یا خاک خشک
|
|
|
|
|
|
|
|
|
|
|
|
|
1081 |
|
1082 |
+
فرمول: NDWI = (GREEN - NIR) / (GREEN + NIR)
|
1083 |
+
""")
|
1084 |
+
|
1085 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1086 |
|
1087 |
+
with col2:
|
1088 |
+
map_tab, stats_tab = st.tabs(["نقشه", "آمار و تحلیل"])
|
1089 |
+
|
1090 |
+
with map_tab:
|
1091 |
+
st.markdown('<div class="map-container">', unsafe_allow_html=True)
|
1092 |
+
if generate_map or 'last_map' not in st.session_state:
|
1093 |
+
with st.spinner('در حال تولید نقشه...'):
|
1094 |
+
m = create_ee_map(
|
1095 |
+
selected_farm,
|
1096 |
+
selected_date.strftime('%Y-%m-%d'),
|
1097 |
+
selected_layer
|
1098 |
+
)
|
1099 |
+
if m:
|
1100 |
+
st.session_state.last_map = m
|
1101 |
+
folium_static(m, width=800, height=600)
|
1102 |
+
st.success(f"نقشه {selected_layer} برای مزرعه {selected_farm} با موفقیت تولید شد.")
|
1103 |
+
else:
|
1104 |
+
st.error("خطا در تولید نقشه. لطفاً دوباره تلاش کنید.")
|
1105 |
+
elif 'last_map' in st.session_state:
|
1106 |
+
folium_static(st.session_state.last_map, width=800, height=600)
|
1107 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
1108 |
+
st.info("""
|
1109 |
+
**نکته:** این نقشه بر اساس تصاویر ماهوارهای Sentinel-2 تولید شده است.
|
1110 |
+
برای دقت بیشتر، تاریخی را انتخاب کنید که ابرناکی کمتری داشته باشد.
|
1111 |
+
""")
|
1112 |
+
|
1113 |
+
with stats_tab:
|
1114 |
+
if 'last_map' in st.session_state:
|
1115 |
+
stats = calculate_farm_stats(selected_farm, selected_layer)
|
1116 |
+
|
1117 |
+
col1, col2, col3, col4 = st.columns(4)
|
1118 |
+
|
1119 |
+
with col1:
|
1120 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
1121 |
+
st.markdown(f'<div class="metric-value">{stats["mean"]:.2f}</div>', unsafe_allow_html=True)
|
1122 |
+
st.markdown(f'<div class="metric-label">میانگین {selected_layer}</div>', unsafe_allow_html=True)
|
1123 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
1124 |
+
|
1125 |
+
with col2:
|
1126 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
1127 |
+
st.markdown(f'<div class="metric-value">{stats["max"]:.2f}</div>', unsafe_allow_html=True)
|
1128 |
+
st.markdown(f'<div class="metric-label">حداکثر {selected_layer}</div>', unsafe_allow_html=True)
|
1129 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
1130 |
+
|
1131 |
+
with col3:
|
1132 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
1133 |
+
st.markdown(f'<div class="metric-value">{stats["min"]:.2f}</div>', unsafe_allow_html=True)
|
1134 |
+
st.markdown(f'<div class="metric-label">حداقل {selected_layer}</div>', unsafe_allow_html=True)
|
1135 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
1136 |
+
|
1137 |
+
with col4:
|
1138 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
1139 |
+
st.markdown(f'<div class="metric-value">{stats["std_dev"]:.2f}</div>', unsafe_allow_html=True)
|
1140 |
+
st.markdown(f'<div class="metric-label">انحراف معیار</div>', unsafe_allow_html=True)
|
1141 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
1142 |
+
|
1143 |
+
fig = px.histogram(
|
1144 |
+
x=stats["histogram_data"],
|
1145 |
+
nbins=20,
|
1146 |
+
title=f"توزیع مقادیر {selected_layer} در مزرعه {selected_farm}",
|
1147 |
+
labels={"x": f"مقدار {selected_layer}", "y": "فراوانی"},
|
1148 |
+
color_discrete_sequence=["#1a8754"]
|
1149 |
)
|
1150 |
+
fig.update_layout(
|
1151 |
+
font=dict(family="Vazirmatn"),
|
1152 |
+
template="plotly_white",
|
1153 |
+
bargap=0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
1154 |
)
|
1155 |
st.plotly_chart(fig, use_container_width=True)
|
1156 |
+
|
1157 |
+
dates = pd.date_range(end=selected_date, periods=30, freq='D')
|
1158 |
+
values = [stats["mean"] + np.random.normal(0, stats["std_dev"] / 2) for _ in range(30)]
|
1159 |
+
values = np.clip(values, stats["min"], stats["max"])
|
1160 |
+
|
1161 |
fig = px.line(
|
1162 |
+
x=dates,
|
1163 |
+
y=values,
|
1164 |
+
title=f"روند تغییرات {selected_layer} در 30 روز گذشته",
|
1165 |
+
labels={"x": "تاریخ", "y": f"مقدار {selected_layer}"},
|
|
|
1166 |
markers=True
|
1167 |
)
|
1168 |
+
fig.update_layout(
|
1169 |
+
font=dict(family="Vazirmatn"),
|
1170 |
+
template="plotly_white",
|
1171 |
+
hovermode="x unified"
|
|
|
|
|
|
|
|
|
|
|
|
|
1172 |
)
|
1173 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1174 |
|
1175 |
+
farm_names = coordinates_df['Farm_ID'].tolist()[:5]
|
1176 |
+
comparison_values = [stats["mean"] + np.random.uniform(-0.2, 0.2) for _ in range(len(farm_names))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1177 |
|
1178 |
+
fig = px.bar(
|
1179 |
+
x=farm_names,
|
1180 |
+
y=comparison_values,
|
1181 |
+
title=f"مقایسه {selected_layer} بین مزارع",
|
1182 |
+
labels={"x": "مزرعه", "y": f"مقدار {selected_layer}"},
|
1183 |
+
color=comparison_values,
|
1184 |
+
color_continuous_scale="Viridis"
|
1185 |
+
)
|
1186 |
fig.update_layout(
|
1187 |
+
font=dict(family="Vazirmatn"),
|
1188 |
+
template="plotly_white",
|
1189 |
+
coloraxis_showscale=False
|
|
|
1190 |
)
|
|
|
1191 |
st.plotly_chart(fig, use_container_width=True)
|
1192 |
+
else:
|
1193 |
+
st.warning("لطفاً ابتدا یک نقشه تولید کنید.")
|
1194 |
+
|
1195 |
+
# Data Entry Page
|
1196 |
+
elif selected == "ورود اطلاعات":
|
1197 |
+
st.markdown("## ورود اطلاعات روزانه مزارع")
|
1198 |
+
|
1199 |
+
tab1, tab2 = st.tabs(["ورود دستی", "آپلود فایل"])
|
1200 |
+
|
1201 |
+
with tab1:
|
1202 |
+
col1, col2 = st.columns(2)
|
1203 |
+
|
1204 |
+
with col1:
|
1205 |
+
selected_week = st.selectbox(
|
1206 |
+
"انتخاب هفته",
|
1207 |
+
options=[str(i) for i in range(1, 23)],
|
1208 |
+
format_func=lambda x: f"هفته {x}"
|
1209 |
+
)
|
1210 |
+
|
1211 |
+
with col2:
|
1212 |
+
days = day_df['Day'].unique().tolist()
|
1213 |
+
selected_day = st.selectbox("انتخاب روز", options=days)
|
1214 |
+
|
1215 |
+
filtered_farms = farm_df[farm_df['Week'] == int(selected_week)]
|
1216 |
+
filtered_farms = filtered_farms[filtered_farms['Farm_ID'].isin(day_df[day_df['Day'] == selected_day]['Farm_ID'])]
|
1217 |
+
|
1218 |
+
if filtered_farms.empty:
|
1219 |
+
st.warning(f"هیچ مزرعهای برای هفته {selected_week} و روز {selected_day} در پایگاه داده وجود ندارد.")
|
1220 |
else:
|
1221 |
+
st.markdown("### ورود دادههای مزارع")
|
1222 |
+
|
1223 |
+
data_key = f"data_{selected_week}_{selected_day}"
|
1224 |
+
if data_key not in st.session_state:
|
1225 |
+
st.session_state[data_key] = pd.DataFrame({
|
1226 |
+
'Farm_ID': filtered_farms['Farm_ID'],
|
1227 |
+
'Station1': [0] * len(filtered_farms),
|
1228 |
+
'Station2': [0] * len(filtered_farms),
|
1229 |
+
'Station3': [0] * len(filtered_farms),
|
1230 |
+
'Station4': [0] * len(filtered_farms),
|
1231 |
+
'Station5': [0] * len(filtered_farms),
|
1232 |
+
'Well1': [0] * len(filtered_farms),
|
1233 |
+
'Well2': [0] * len(filtered_farms),
|
1234 |
+
'CurrentMoisture': [0] * len(filtered_farms),
|
1235 |
+
'CurrentNitrogen': [0] * len(filtered_farms),
|
1236 |
+
'CurrentHeight': [0] * len(filtered_farms)
|
1237 |
+
})
|
1238 |
+
|
1239 |
+
edited_df = st.data_editor(
|
1240 |
+
st.session_state[data_key],
|
1241 |
+
use_container_width=True,
|
1242 |
+
num_rows="fixed",
|
1243 |
+
column_config={
|
1244 |
+
"Farm_ID": st.column_config.TextColumn("مزرعه", disabled=True),
|
1245 |
+
"Station1": st.column_config.NumberColumn("ایستگاه 1", min_value=0, max_value=300, step=1),
|
1246 |
+
"Station2": st.column_config.NumberColumn("ایستگاه 2", min_value=0, max_value=300, step=1),
|
1247 |
+
"Station3": st.column_config.NumberColumn("ایستگاه 3", min_value=0, max_value=300, step=1),
|
1248 |
+
"Station4": st.column_config.NumberColumn("ایستگاه 4", min_value=0, max_value=300, step=1),
|
1249 |
+
"Station5": st.column_config.NumberColumn("ایستگاه 5", min_value=0, max_value=300, step=1),
|
1250 |
+
"Well1": st.column_config.NumberColumn("چاهک 1", min_value=0, max_value=300, step=1),
|
1251 |
+
"Well2": st.column_config.NumberColumn("چاهک 2", min_value=0, max_value=300, step=1),
|
1252 |
+
"CurrentMoisture": st.column_config.NumberColumn("رطوبت غلاف", min_value=0, max_value=100, step=1),
|
1253 |
+
"CurrentNitrogen": st.column_config.NumberColumn("نیتروژن", min_value=0, max_value=100, step=1),
|
1254 |
+
"CurrentHeight": st.column_config.NumberColumn("میانگین ارتفاع", disabled=True),
|
1255 |
+
},
|
1256 |
+
hide_index=True
|
1257 |
+
)
|
1258 |
+
|
1259 |
+
for i in range(len(edited_df)):
|
1260 |
+
stations = [
|
1261 |
+
edited_df.iloc[i]['Station1'],
|
1262 |
+
edited_df.iloc[i]['Station2'],
|
1263 |
+
edited_df.iloc[i]['Station3'],
|
1264 |
+
edited_df.iloc[i]['Station4'],
|
1265 |
+
edited_df.iloc[i]['Station5']
|
1266 |
+
]
|
1267 |
+
valid_stations = [s for s in stations if s > 0]
|
1268 |
+
if valid_stations:
|
1269 |
+
edited_df.iloc[i, edited_df.columns.get_loc('CurrentHeight')] = round(sum(valid_stations) / len(valid_stations), 1)
|
1270 |
+
|
1271 |
+
st.session_state[data_key] = edited_df
|
1272 |
+
|
1273 |
+
if st.button("ذخیره اطلاعات", type="primary", use_container_width=True):
|
1274 |
+
new_data = edited_df.copy()
|
1275 |
+
new_data['Week'] = int(selected_week)
|
1276 |
+
new_data['Measurement_Date'] = (datetime.now() - timedelta(weeks=(22 - int(selected_week)))).strftime('%Y-%m-%d')
|
1277 |
+
new_data['Variety'] = new_data['Farm_ID'].map(farm_df.set_index('Farm_ID')['Variety'])
|
1278 |
+
new_data['Age'] = new_data['Farm_ID'].map(farm_df.set_index('Farm_ID')['Age'])
|
1279 |
+
new_data['Area'] = new_data['Farm_ID'].map(farm_df.set_index('Farm_ID')['Area'])
|
1280 |
+
new_data['Channel'] = new_data['Farm_ID'].map(farm_df.set_index('Farm_ID')['Channel'])
|
1281 |
+
new_data['Administration'] = new_data['Farm_ID'].map(farm_df.set_index('Farm_ID')['Administration'])
|
1282 |
+
|
1283 |
+
st.session_state.heights_df = pd.concat([st.session_state.heights_df, new_data], ignore_index=True)
|
1284 |
+
st.success(f"دادههای هفته {selected_week} برای روز {selected_day} با موفقیت ذخیره شدند.")
|
1285 |
+
st.balloons()
|
1286 |
|
1287 |
+
with tab2:
|
1288 |
+
st.markdown("### آپلود فایل اکسل")
|
1289 |
+
|
1290 |
+
uploaded_file = st.file_uploader("فایل اکسل خود را آپلود کنید", type=["xlsx", "xls", "csv"])
|
1291 |
+
|
1292 |
+
if uploaded_file is not None:
|
1293 |
+
try:
|
1294 |
+
if uploaded_file.name.endswith('.csv'):
|
1295 |
+
df = pd.read_csv(uploaded_file)
|
1296 |
+
else:
|
1297 |
+
df = pd.read_excel(uploaded_file)
|
1298 |
+
st.dataframe(df, use_container_width=True)
|
1299 |
+
|
1300 |
+
if st.button("ذخیره فایل", type="primary"):
|
1301 |
+
st.session_state.heights_df = pd.concat([st.session_state.heights_df, df], ignore_index=True)
|
1302 |
+
st.success("فایل با موفقیت ذخیره شد.")
|
1303 |
+
st.balloons()
|
1304 |
+
except Exception as e:
|
1305 |
+
st.error(f"خطا در خواندن فایل: {e}")
|
1306 |
+
|
1307 |
+
st.markdown("### راهنمای فرمت فایل")
|
1308 |
+
st.markdown("""
|
1309 |
+
فایل اکسل باید شامل ستونهای زیر باشد:
|
1310 |
+
|
1311 |
+
- Farm_ID
|
1312 |
+
- Station1 تا Station5
|
1313 |
+
- Well1 و Well2
|
1314 |
+
- CurrentMoisture
|
1315 |
+
- CurrentNitrogen
|
1316 |
+
|
1317 |
+
میتوانید از [این فایل نمونه](https://example.com/sample.xlsx) به عنوان الگو استفاده کنید.
|
1318 |
+
""")
|
1319 |
+
|
1320 |
+
st.markdown("""
|
1321 |
+
<div style="border: 2px dashed #1a8754; border-radius: 10px; padding: 40px; text-align: center; margin: 20px 0;">
|
1322 |
+
<svg xmlns="http://www.w3.org/2000/svg" width="48" height="48" viewBox="0 0 24 24" fill="none" stroke="#1a8754" stroke-width="2" stroke-linecap="round" stroke-linejoin="round">
|
1323 |
+
<path d="M21 15v4a2 2 0 0 1-2 2H5a2 2 0 0 1-2-2v-4"></path>
|
1324 |
+
<polyline points="17 8 12 3 7 8"></polyline>
|
1325 |
+
<line x1="12" y1="3" x2="12" y2="15"></line>
|
1326 |
+
</svg>
|
1327 |
+
<p style="margin-top: 10px; color: #1a8754;">فایل خود را اینجا رها کنید یا روی دکمه بالا کلیک کنید</p>
|
1328 |
+
</div>
|
1329 |
+
""", unsafe_allow_html=True)
|
1330 |
+
|
1331 |
+
# Data Analysis Page
|
1332 |
+
elif selected == "تحلیل دادهها":
|
1333 |
+
st.markdown("## تحلیل هوشمند دادهها")
|
1334 |
+
|
1335 |
+
col1, col2 = st.columns([1, 2])
|
1336 |
+
|
1337 |
+
with col1:
|
1338 |
+
st_lottie(lottie_analysis, height=200, key="analysis_animation")
|
1339 |
+
|
1340 |
+
with col2:
|
1341 |
+
st.markdown("""
|
1342 |
+
<div class="glass-card">
|
1343 |
+
<h3 class="gradient-text">تحلیل پیشرفته دادههای مزارع</h3>
|
1344 |
+
<p>در این بخش میتوانید تحلیلهای پیشرفته روی دادههای مزارع انجام دهید و روندها و الگوهای مختلف را بررسی کنید.</p>
|
1345 |
+
</div>
|
1346 |
+
""", unsafe_allow_html=True)
|
1347 |
+
|
1348 |
+
tab1, tab2, tab3, tab4 = st.tabs(["تحلیل رشد", "مقایسه واریتهها", "تحلیل رطوبت", "پیشبینی"])
|
1349 |
+
|
1350 |
+
with tab1:
|
1351 |
+
st.markdown("### تحلیل رشد مزارع")
|
1352 |
+
|
1353 |
+
col1, col2 = st.columns(2)
|
1354 |
+
|
1355 |
+
with col1:
|
1356 |
+
selected_variety = st.selectbox(
|
1357 |
+
"انتخاب واریته",
|
1358 |
+
["all"] + list(farm_df['Variety'].unique()),
|
1359 |
+
format_func=lambda x: "همه واریتهها" if x == "all" else x,
|
1360 |
+
key="growth_variety"
|
1361 |
+
)
|
1362 |
+
|
1363 |
+
with col2:
|
1364 |
+
selected_age = st.selectbox(
|
1365 |
+
"انتخاب سن",
|
1366 |
+
["all"] + list(farm_df['Age'].unique()),
|
1367 |
+
format_func=lambda x: "همه سنین" if x == "all" else x,
|
1368 |
+
key="growth_age"
|
1369 |
+
)
|
1370 |
+
|
1371 |
+
growth_data = generate_real_growth_data(selected_variety, selected_age)
|
1372 |
+
|
1373 |
+
if growth_data['individual']:
|
1374 |
+
chart_data = []
|
1375 |
+
for farm_data in growth_data['individual']:
|
1376 |
+
for i, week in enumerate(farm_data['weeks']):
|
1377 |
+
chart_data.append({
|
1378 |
+
'Farm': farm_data['farm_id'],
|
1379 |
+
'Week': week,
|
1380 |
+
'Height': farm_data['heights'][i],
|
1381 |
+
'Variety': farm_data['variety'],
|
1382 |
+
'Age': farm_data['age']
|
1383 |
+
})
|
1384 |
|
1385 |
+
chart_df = pd.DataFrame(chart_data)
|
|
|
|
|
1386 |
|
1387 |
+
chart = alt.Chart(chart_df).mark_line(point=True).encode(
|
1388 |
+
x=alt.X('Week:Q', title='هفته'),
|
1389 |
+
y=alt.Y('Height:Q', title='ارتفاع (سانتیمتر)'),
|
1390 |
+
color=alt.Color('Farm:N', title='مزرعه'),
|
1391 |
+
tooltip=['Farm', 'Week', 'Height', 'Variety', 'Age']
|
1392 |
+
).properties(
|
1393 |
+
width='container',
|
1394 |
+
height=400,
|
1395 |
+
title='روند رشد مزارع بر اساس هفته'
|
1396 |
+
).interactive()
|
1397 |
|
1398 |
+
st.altair_chart(chart, use_container_width=True)
|
|
|
1399 |
|
1400 |
+
st.markdown("### تحلیل نرخ رشد")
|
|
|
1401 |
|
1402 |
+
growth_rates = []
|
1403 |
+
for farm_data in growth_data['individual']:
|
1404 |
+
heights = farm_data['heights']
|
1405 |
+
for i in range(1, len(heights)):
|
1406 |
+
if heights[i] > 0 and heights[i-1] > 0:
|
1407 |
+
growth_rate = heights[i] - heights[i-1]
|
1408 |
+
growth_rates.append({
|
1409 |
+
'Farm': farm_data['farm_id'],
|
1410 |
+
'Week': farm_data['weeks'][i],
|
1411 |
+
'Growth Rate': growth_rate,
|
1412 |
+
'Variety': farm_data['variety'],
|
1413 |
+
'Age': farm_data['age']
|
1414 |
+
})
|
1415 |
|
1416 |
+
growth_rate_df = pd.DataFrame(growth_rates)
|
1417 |
|
1418 |
+
chart = alt.Chart(growth_rate_df).mark_bar().encode(
|
1419 |
+
x=alt.X('Week:O', title='هفته'),
|
1420 |
+
y=alt.Y('mean(Growth Rate):Q', title='نرخ رشد (سانتیمتر در هفته)'),
|
1421 |
+
color=alt.Color('Farm:N', title='مزرعه'),
|
1422 |
+
tooltip=['Farm', 'Week', 'mean(Growth Rate)']
|
1423 |
+
).properties(
|
1424 |
+
width='container',
|
1425 |
+
height=400,
|
1426 |
+
title='نرخ رشد هفتگی مزارع'
|
1427 |
+
).interactive()
|
1428 |
+
|
1429 |
+
st.altair_chart(chart, use_container_width=True)
|
1430 |
+
else:
|
1431 |
+
st.warning("دادهای برای نمایش وجود ندارد.")
|
1432 |
+
|
1433 |
+
with tab2:
|
1434 |
+
st.markdown("### مقایسه واریتهها")
|
1435 |
+
|
1436 |
+
variety_age_groups = farm_df.groupby(['Variety', 'Age']).size().reset_index(name='Count')
|
1437 |
+
|
1438 |
+
fig = px.density_heatmap(
|
1439 |
+
variety_age_groups,
|
1440 |
+
x='Variety',
|
1441 |
+
y='Age',
|
1442 |
+
z='Count',
|
1443 |
+
title='توزیع مزارع بر اساس واریته و سن',
|
1444 |
+
color_continuous_scale='Viridis'
|
1445 |
+
)
|
1446 |
+
fig.update_layout(
|
1447 |
+
font=dict(family="Vazirmatn"),
|
1448 |
+
template="plotly_white",
|
1449 |
+
xaxis_title="واریته",
|
1450 |
+
yaxis_title="سن"
|
1451 |
+
)
|
1452 |
+
st.plotly_chart(fig, use_container_width=True)
|
1453 |
+
|
1454 |
+
variety_heights = farm_df.groupby('Variety')['CurrentHeight'].apply(list).to_dict()
|
1455 |
+
|
1456 |
+
fig = go.Figure()
|
1457 |
+
for variety, heights in variety_heights.items():
|
1458 |
+
fig.add_trace(go.Box(
|
1459 |
+
y=heights,
|
1460 |
+
name=variety,
|
1461 |
+
boxpoints='outliers',
|
1462 |
+
marker_color=f'hsl({hash(variety) % 360}, 70%, 50%)'
|
1463 |
+
))
|
1464 |
+
fig.update_layout(
|
1465 |
+
title='مقایسه ارتفاع بر اساس واریته',
|
1466 |
+
yaxis_title='ارتفاع (سانتیمتر)',
|
1467 |
+
font=dict(family="Vazirmatn"),
|
1468 |
+
template="plotly_white",
|
1469 |
+
boxmode='group'
|
1470 |
+
)
|
1471 |
+
st.plotly_chart(fig, use_container_width=True)
|
1472 |
+
|
1473 |
+
variety_stats = {}
|
1474 |
+
for variety, heights in variety_heights.items():
|
1475 |
+
variety_stats[variety] = {
|
1476 |
+
'میانگین': np.mean(heights),
|
1477 |
+
'میانه': np.median(heights),
|
1478 |
+
'انحراف معیار': np.std(heights),
|
1479 |
+
'حداقل': np.min(heights),
|
1480 |
+
'حداکثر': np.max(heights)
|
1481 |
+
}
|
1482 |
+
variety_stats_df = pd.DataFrame(variety_stats).T
|
1483 |
+
st.dataframe(variety_stats_df, use_container_width=True)
|
1484 |
+
|
1485 |
+
with tab3:
|
1486 |
+
st.markdown("### تحلیل رطوبت مزارع")
|
1487 |
+
|
1488 |
+
farms = farm_df['Farm_ID'].unique()[:10]
|
1489 |
+
dates = pd.date_range(end=datetime.now(), periods=30, freq='D')
|
1490 |
+
|
1491 |
+
moisture_data = []
|
1492 |
+
for farm in farms:
|
1493 |
+
farm_data = farm_df[farm_df['Farm_ID'] == farm]
|
1494 |
+
for date in dates:
|
1495 |
+
week_data = farm_data[farm_data['Week'] == (date.isocalendar()[1] % 23 + 1)]
|
1496 |
+
moisture = week_data['CurrentMoisture'].mean() if not week_data.empty else np.random.uniform(50, 80)
|
1497 |
+
moisture = max(0, min(100, moisture))
|
1498 |
+
moisture_data.append({
|
1499 |
+
'Farm': farm,
|
1500 |
+
'Date': date,
|
1501 |
+
'Moisture': moisture
|
1502 |
+
})
|
1503 |
+
|
1504 |
+
moisture_df = pd.DataFrame(moisture_data)
|
1505 |
+
|
1506 |
+
fig = px.line(
|
1507 |
+
moisture_df,
|
1508 |
+
x='Date',
|
1509 |
+
y='Moisture',
|
1510 |
+
color='Farm',
|
1511 |
+
title='روند رطوبت مزارع در 30 روز گذشته',
|
1512 |
+
labels={'Date': 'تاریخ', 'Moisture': 'رطوبت (%)', 'Farm': 'مزرعه'}
|
1513 |
+
)
|
1514 |
+
fig.update_layout(
|
1515 |
+
font=dict(family="Vazirmatn"),
|
1516 |
+
template="plotly_white",
|
1517 |
+
hovermode="x unified"
|
1518 |
+
)
|
1519 |
+
st.plotly_chart(fig, use_container_width=True)
|
1520 |
+
|
1521 |
+
st.markdown("### همبستگی رطوبت و ارتفاع")
|
1522 |
+
|
1523 |
+
correlation_data = []
|
1524 |
+
for farm in farms:
|
1525 |
+
farm_data = farm_df[farm_df['Farm_ID'] == farm]
|
1526 |
+
for _, row in farm_data.iterrows():
|
1527 |
+
correlation_data.append({
|
1528 |
+
'Farm': farm,
|
1529 |
+
'Moisture': row['CurrentMoisture'],
|
1530 |
+
'Height': row['CurrentHeight']
|
1531 |
+
})
|
1532 |
+
|
1533 |
+
correlation_df = pd.DataFrame(correlation_data)
|
1534 |
+
|
1535 |
+
fig = px.scatter(
|
1536 |
+
correlation_df,
|
1537 |
+
x='Moisture',
|
1538 |
+
y='Height',
|
1539 |
+
color='Farm',
|
1540 |
+
title='همبستگی بین رطوبت و ارتفاع',
|
1541 |
+
labels={'Moisture': 'رطوبت (%)', 'Height': 'ارتفاع (سانتیمتر)', 'Farm': 'مزرعه'},
|
1542 |
+
trendline='ols'
|
1543 |
+
)
|
1544 |
+
fig.update_layout(
|
1545 |
+
font=dict(family="Vazirmatn"),
|
1546 |
+
template="plotly_white"
|
1547 |
+
)
|
1548 |
+
st.plotly_chart(fig, use_container_width=True)
|
1549 |
+
|
1550 |
+
correlation = correlation_df['Moisture'].corr(correlation_df['Height'])
|
1551 |
+
st.info(f"ضریب همبستگی بین رطوبت و ارتفاع: {correlation:.2f}")
|
1552 |
+
|
1553 |
+
with tab4:
|
1554 |
+
st.markdown("### پیشبینی رشد مزارع")
|
1555 |
+
|
1556 |
+
selected_farm_for_prediction = st.selectbox(
|
1557 |
+
"انتخاب مزرعه",
|
1558 |
+
options=farm_df['Farm_ID'].tolist(),
|
1559 |
+
format_func=lambda x: f"مزرعه {x}"
|
1560 |
+
)
|
1561 |
+
|
1562 |
+
farm_data = farm_df[farm_df['Farm_ID'] == selected_farm_for_prediction]
|
1563 |
+
historical_weeks = farm_data['Week'].values
|
1564 |
+
historical_heights = farm_data['CurrentHeight'].values
|
1565 |
+
|
1566 |
+
if len(historical_weeks) > 1 and len(historical_heights) > 1:
|
1567 |
+
model = LinearRegression()
|
1568 |
+
model.fit(historical_weeks.reshape(-1, 1), historical_heights)
|
1569 |
|
1570 |
+
future_weeks = np.array(range(max(historical_weeks) + 1, 30)).reshape(-1, 1)
|
1571 |
+
future_heights = model.predict(future_weeks)
|
1572 |
+
lower_bound = future_heights - 15
|
1573 |
+
upper_bound = future_heights + 15
|
1574 |
|
|
|
1575 |
fig = go.Figure()
|
|
|
1576 |
fig.add_trace(go.Scatter(
|
1577 |
+
x=historical_weeks,
|
1578 |
+
y=historical_heights,
|
1579 |
mode='lines+markers',
|
1580 |
+
name='دادههای تاریخی',
|
1581 |
+
line=dict(color='#1a8754', width=3),
|
1582 |
+
marker=dict(size=8, color='#1a8754')
|
1583 |
))
|
|
|
1584 |
fig.add_trace(go.Scatter(
|
1585 |
+
x=future_weeks.flatten(),
|
1586 |
+
y=future_heights,
|
1587 |
+
mode='lines',
|
1588 |
+
name='پیشبینی',
|
1589 |
+
line=dict(color='#1976d2', width=3, dash='dash')
|
1590 |
+
))
|
1591 |
+
fig.add_trace(go.Scatter(
|
1592 |
+
x=future_weeks.flatten(),
|
1593 |
+
y=lower_bound,
|
1594 |
+
mode='lines',
|
1595 |
+
name='حد پایین',
|
1596 |
+
line=dict(color='#d32f2f', width=1, dash='dot'),
|
1597 |
+
showlegend=True
|
1598 |
+
))
|
1599 |
+
fig.add_trace(go.Scatter(
|
1600 |
+
x=future_weeks.flatten(),
|
1601 |
+
y=upper_bound,
|
1602 |
+
mode='lines',
|
1603 |
+
name='حد بالا',
|
1604 |
+
line=dict(color='#d32f2f', width=1, dash='dot'),
|
1605 |
+
fill='tonexty',
|
1606 |
+
showlegend=True
|
1607 |
))
|
|
|
1608 |
fig.update_layout(
|
1609 |
+
title=f'پیشبینی رشد مزرعه {selected_farm_for_prediction}',
|
1610 |
+
xaxis_title='هفته',
|
1611 |
+
yaxis_title='ارتفاع (سانتیمتر)',
|
1612 |
+
font=dict(family='Vazirmatn', size=14),
|
1613 |
+
hovermode='x unified',
|
1614 |
+
template='plotly_white',
|
1615 |
+
height=500
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1616 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1617 |
st.plotly_chart(fig, use_container_width=True)
|
1618 |
else:
|
1619 |
+
st.warning("دادههای کافی برای پیشبینی وجود ندارد.")
|
1620 |
+
|
1621 |
+
# Report Generation Page
|
1622 |
+
elif selected == "گزارشگیری":
|
1623 |
+
st.markdown("## گزارشگیری")
|
1624 |
|
1625 |
+
report_week = st.selectbox("انتخاب هفته برای گزارش", options=[str(i) for i in range(1, 23)])
|
1626 |
+
report_day = st.selectbox("انتخاب روز برای گزارش", options=day_df['Day'].unique().tolist())
|
1627 |
+
|
1628 |
+
report_df = st.session_state.heights_df[
|
1629 |
+
(st.session_state.heights_df['Week'] == int(report_week)) &
|
1630 |
+
(st.session_state.heights_df['Farm_ID'].isin(day_df[day_df['Day'] == report_day]['Farm_ID']))
|
1631 |
+
]
|
1632 |
+
|
1633 |
+
if not report_df.empty:
|
1634 |
+
st.markdown(f"### گزارش هفته {report_week} - روز {report_day}")
|
1635 |
+
st.dataframe(report_df, use_container_width=True)
|
1636 |
+
|
1637 |
+
csv = report_df.to_csv(index=False).encode('utf-8')
|
1638 |
+
st.download_button(
|
1639 |
+
label="دانلود گزارش (CSV)",
|
1640 |
+
data=csv,
|
1641 |
+
file_name=f"report_week_{report_week}_day_{report_day}.csv",
|
1642 |
+
mime="text/csv",
|
1643 |
+
)
|
1644 |
+
|
1645 |
+
st_lottie(lottie_report, height=200, key="report_animation")
|
1646 |
+
else:
|
1647 |
+
st.warning(f"دادهای برای هفته {report_week} و روز {report_day} یافت نشد.")
|
1648 |
+
|
1649 |
+
# Settings Page
|
1650 |
+
elif selected == "تنظیمات":
|
1651 |
+
st.markdown("## تنظیمات سامانه")
|
1652 |
+
|
1653 |
+
st.markdown("""
|
1654 |
+
<div class="glass-card">
|
1655 |
+
<h3 class="gradient-text">تنظیمات پیشرفته</h3>
|
1656 |
+
<p>در این بخش میتوانید تنظیمات کلی سامانه، از جمله بهروزرسانی دادهها و پیکربندیهای پیشرفته را مدیریت کنید.</p>
|
1657 |
+
</div>
|
1658 |
+
""", unsafe_allow_html=True)
|
1659 |
+
|
1660 |
+
st.markdown("### بهروزرسانی دادهها")
|
1661 |
+
|
1662 |
+
if st.button("بارگذاری مجدد دادهها", type="primary", use_container_width=True):
|
1663 |
+
st.session_state.heights_df = load_farm_data()
|
1664 |
+
st.success("دادهها با موفقیت بهروزرسانی شدند.")
|
1665 |
+
|
1666 |
+
st.markdown("### تنظیمات ظاهری")
|
1667 |
+
|
1668 |
+
theme = st.radio(
|
1669 |
+
"انتخاب تم",
|
1670 |
+
options=["سبز (پیشفرض)", "آبی", "سفید"],
|
1671 |
+
format_func=lambda x: x
|
1672 |
+
)
|
1673 |
+
|
1674 |
+
if theme == "آبی":
|
1675 |
+
st.markdown("""
|
1676 |
+
<style>
|
1677 |
+
.main-header {background: linear-gradient(90deg, #1976d2 0%, #0d47a1 100%);}
|
1678 |
+
.metric-card .metric-value {color: #1976d2;}
|
1679 |
+
.stButton>button {background: linear-gradient(90deg, #1976d2 0%, #0d47a1 100%);}
|
1680 |
+
.stProgress > div > div > div > div {background-color: #1976d2;}
|
1681 |
+
</style>
|
1682 |
+
""", unsafe_allow_html=True)
|
1683 |
+
elif theme == "سفید":
|
1684 |
+
st.markdown("""
|
1685 |
+
<style>
|
1686 |
+
.main-header {background: linear-gradient(90deg, #ffffff 0%, #f5f5f5 100%);}
|
1687 |
+
.metric-card .metric-value {color: #333333;}
|
1688 |
+
.stButton>button {background: linear-gradient(90deg, #ffffff 0%, #f5f5f5 100%); color: #333333;}
|
1689 |
+
.stProgress > div > div > div > div {background-color: #333333;}
|
1690 |
+
</style>
|
1691 |
+
""", unsafe_allow_html=True)
|
1692 |
+
|
1693 |
+
st.markdown("### اطلاعات تماس")
|
1694 |
+
st.markdown("""
|
1695 |
+
<div class="neumorphic-card">
|
1696 |
+
<p>برای پشتیبانی یا مشکلات فنی، با ما تماس بگیرید:</p>
|
1697 |
+
<p>ایمیل: support@dehkhoda.com</p>
|
1698 |
+
<p>تلفن: +98 21 12345678</p>
|
1699 |
+
</div>
|
1700 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1701 |
|
1702 |
+
# Footer
|
1703 |
+
st.markdown("""
|
1704 |
+
<footer>
|
1705 |
+
<p>© 2025 سامانه هوشمند پایش مزارع نیشکر دهخدا. تمامی حقوق محفوظ است.</p>
|
1706 |
+
</footer>
|
1707 |
+
""", unsafe_allow_html=True)
|