Esmaeilkianii commited on
Commit
cad6d37
·
verified ·
1 Parent(s): d544e6d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +785 -698
app.py CHANGED
@@ -1,780 +1,867 @@
1
  import streamlit as st
2
- import ee
3
- import folium
4
  import pandas as pd
5
  import numpy as np
6
- import datetime
7
- import requests
8
- import json
9
- import os
10
  from streamlit_folium import folium_static
11
- import matplotlib.pyplot as plt
 
 
 
 
12
  import plotly.express as px
13
  import plotly.graph_objects as go
14
- from datetime import datetime, timedelta
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- # Set page configuration
17
  st.set_page_config(
18
- page_title="Sugarcane Monitoring System",
19
  page_icon="🌿",
20
  layout="wide",
21
  initial_sidebar_state="expanded"
22
  )
23
 
24
- # App title and description
25
- st.title("Sugarcane Monitoring System")
26
- st.markdown("### Monitoring sugarcane farms in Khuzestan, Iran")
27
-
28
- # Load service account credentials for Earth Engine
29
- @st.cache_resource
30
- def initialize_ee():
31
- service_account = 'dehkhodamap-e9f0da4ce9f6514021@ee-esmaeilkiani13877.iam.gserviceaccount.com'
32
 
33
- # Create a temporary credentials file
34
- credentials_path = 'credentials.json'
35
- with open(credentials_path, 'w') as f:
36
- f.write(json.dumps({
37
- "type": "service_account",
38
- "project_id": "ee-esmaeilkiani13877",
39
- "private_key_id": "cfdea6eaf4115cb6462626743e4b15df85fd0c7f",
40
- "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQCjeOvgKi+gWK6k\n2/0RXOA3LAo51DVxA1ja9v0qFOn4FNOStxkwlKvcK8yDQNb53FPORHFIUHvev3y7\niHr/UEUqnn5Rzjbf0k3qWB/fS377/UP4VznMsFpKiHNxCBtaNS8KLk6Rat6Y7Xfm\nJfpSU7ZjYZmVc81M/7iFofGUSJoHYpxhyt3rjp53huxJNNW5e12TFnLkyg1Ja/9X\nGMTt+vjVcO4XhQCIlaGVdSKS2sHlHgzpzE6KtuUKjDMEBqPkWF4xc16YavYltwPd\nqULCu2/t6dczhYL4NEFj8wL+KJqOojfsyoWmzqPFx1Bbxk4BVPk/lslq9+m9p5kq\nSCG0/9W9AgMBAAECggEAEGchw+x3uu8rFv+79PIMzXxtyj+w3RYo5E/EN2TB1VLB\nqAcXT/ibBgyfCMyIxamF/zx+4XKx+zfbnDWlodi8F/qvUiYO+4ZuqwUMras1orNX\nDqQx+If5h2EJtF3L4NFVVwAuggjnLREm5sEIzRn5Qx+X+ZcVEpTWPxJw2yAt1G+3\nk311KqD+zR7jQfchXU4xQQ1ZoHkdAJ/DPGun6x+HUOq7Gus73A6IzLp12ZoiHN3n\nkY+lG8cMs039QAe/OhZFEo5I9cNSaI688HmsLRivZ26WoPEnwcN0MHQGtXqGmMUI\nCcpgJqllqdWMuBlYcpSadn7rZzPujSlzIxkvieLeAQKBgQDNTYUWZdGbA2sHcBpJ\nrqKwDYF/AwZtjx+hXHVBRbR6DJ1bO2P9n51ioTMP/H9K61OBAMZ7w71xJ2I+9Snv\ncYumPWoiUwiOhTh3O7nYz6mR7sK0HuUCZfYdaxJVnLgNCgj+w9AxYnkzOyL9/QvJ\nknrlMKf4H59NbapBqy5spilq1QKBgQDL1wkGHhoTuLb5Xp3X3CX4S7WMke4T01bO\nPpMmlewVgH5lK5wTcZjB8QRO2QFQtUZTP/Ghv6ZH4h/3P9/ZIF3hV5CSsUkr/eFf\nMY+fQL1K/puwfZbSDcH1GtDToOyoLFIvPXBJo0Llg/oF2TK1zGW3cPszeDf/Tm6x\nUwUMw2BjSQKBgEJzAMyLEBi4NoAlzJxkpcuN04gkloQHexljL6B8yzlls9i/lFGW\nw/4UZs6ZzymUmWZ7tcKBTGO/d5EhEP2rJqQb5KpPbcmTXP9amYCPVjchrGtYRI9O\nKSbEbR7ApuGxic/L2Sri0I/AaEcFDDel7ZkY8oTg11LcV+sBWPlZnrYxAoGBALXj\n/DlpQvu2KA/9TfwAhiE57Zax4S/vtdX0IHqd7TyCnEbK00rGYvksiBuTqIjMOSSw\nOn2K9mXOcZe/d4/YQe2CpY9Ag3qt4R2ArBf/POpep66lYp+thxWgCBfP0V1/rxZY\nTIppFJiZW9E8LvPqoBlAx+b1r4IyCrRQ0IDDFo+BAoGBAMCff4XKXHlV2SDOL5uh\nV/f9ApEdF4leuo+hoMryKuSQ9Y/H0A/Lzw6KP5FLvVtqc0Kw2D1oLy8O72a1xwfY\n8dpZMNzKAWWS7viN0oC+Ebj2Foc2Mn/J6jdhtP/YRLTqvoTWCa2rVcn4R1BurMIf\nLa4DJE9BagGdVNTDtynBhKhZ\n-----END PRIVATE KEY-----\n",
41
- "client_email": "dehkhodamap-e9f0da4ce9f6514021@ee-esmaeilkiani13877.iam.gserviceaccount.com",
42
- "client_id": "113062529451626176784",
43
- "auth_uri": "https://accounts.google.com/o/oauth2/auth",
44
- "token_uri": "https://oauth2.googleapis.com/token",
45
- "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
46
- "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dehkhodamap-e9f0da4ce9f6514021%40ee-esmaeilkiani13877.iam.gserviceaccount.com",
47
- "universe_domain": "googleapis.com"
48
- }))
49
- )
50
 
51
- # Authenticate and initialize
52
- credentials = ee.ServiceAccountCredentials(service_account, credentials_path)
53
- ee.Initialize(credentials)
 
54
 
55
- # Remove the temporary file after initialization
56
- os.remove(credentials_path)
 
 
 
 
 
 
 
 
 
57
 
58
- return True
59
-
60
- # Download CSV data from URLs
61
- @st.cache_data
62
- def load_farm_data():
63
- farm_coords_url = "https://hebbkx1anhila5yf.public.blob.vercel-storage.com/farm_coordinates-TTksVyH860XeyfKUCGMMkq9pYMChZj.csv"
64
- farm_db_url = "https://hebbkx1anhila5yf.public.blob.vercel-storage.com/%D9%BE%D8%A7%DB%8C%DA%AF%D8%A7%D9%87%20%D8%AF%D8%A7%D8%AF%D9%87%20%281%29-5Aq8TzJrbK3y5AtUVjrU0bwZD1SUHL.csv"
65
 
66
- # Load farm coordinates
67
- farm_coords = pd.read_csv(farm_coords_url)
 
 
 
 
 
68
 
69
- # Load farm database
70
- farm_db = pd.read_csv(farm_db_url)
 
 
 
 
71
 
72
- return farm_coords, farm_db
73
-
74
- # Process satellite imagery using GEE
75
- @st.cache_data(ttl=3600)
76
- def get_satellite_indices(lat, lon, date_range):
77
- # Define point of interest
78
- poi = ee.Geometry.Point([lon, lat])
79
-
80
- # Define region around the point
81
- region = poi.buffer(500) # 500m buffer around the point
82
-
83
- # Load Sentinel-2 collection
84
- s2 = ee.ImageCollection('COPERNICUS/S2_SR') \
85
- .filterBounds(region) \
86
- .filterDate(date_range[0], date_range[1]) \
87
- .sort('CLOUDY_PIXEL_PERCENTAGE') \
88
- .first()
89
-
90
- if s2 is None:
91
- return None, None, None, None
92
-
93
- # Calculate indices
94
- ndvi = s2.normalizedDifference(['B8', 'B4']).rename('NDVI')
95
- ndwi = s2.normalizedDifference(['B3', 'B8']).rename('NDWI')
96
-
97
- # LAI calculation (Leaf Area Index)
98
- # Using simplified model: LAI = 3.618 * NDVI - 0.118
99
- lai = ndvi.multiply(3.618).subtract(0.118).rename('LAI')
100
-
101
- # Chlorophyll content (CHL)
102
- # Using ratio of bands B8/B5
103
- chl = s2.select('B8').divide(s2.select('B5')).rename('CHL')
104
-
105
- # Create visualization parameters
106
- ndvi_vis = {
107
- 'min': 0,
108
- 'max': 1,
109
- 'palette': ['red', 'yellow', 'green']
110
  }
111
 
112
- ndwi_vis = {
113
- 'min': -1,
114
- 'max': 1,
115
- 'palette': ['red', 'white', 'blue']
 
 
116
  }
117
 
118
- lai_vis = {
119
- 'min': 0,
120
- 'max': 5,
121
- 'palette': ['white', 'lightgreen', 'darkgreen']
122
  }
123
 
124
- chl_vis = {
125
- 'min': 1,
126
- 'max': 3,
127
- 'palette': ['white', 'yellow', 'green']
128
  }
129
 
130
- # Get NDVI map tile URL
131
- ndvi_mapid = ndvi.getMapId(ndvi_vis)
132
- ndvi_url = ndvi_mapid['tile_fetcher'].url_format
133
-
134
- # Get NDWI map tile URL
135
- ndwi_mapid = ndwi.getMapId(ndwi_vis)
136
- ndwi_url = ndwi_mapid['tile_fetcher'].url_format
137
-
138
- # Get LAI map tile URL
139
- lai_mapid = lai.getMapId(lai_vis)
140
- lai_url = lai_mapid['tile_fetcher'].url_format
141
-
142
- # Get CHL map tile URL
143
- chl_mapid = chl.getMapId(chl_vis)
144
- chl_url = chl_mapid['tile_fetcher'].url_format
145
-
146
- # Get values at point
147
- ndvi_val = ndvi.reduceRegion(
148
- reducer=ee.Reducer.mean(),
149
- geometry=poi,
150
- scale=10
151
- ).getInfo()['NDVI']
152
-
153
- ndwi_val = ndwi.reduceRegion(
154
- reducer=ee.Reducer.mean(),
155
- geometry=poi,
156
- scale=10
157
- ).getInfo()['NDWI']
158
-
159
- lai_val = lai.reduceRegion(
160
- reducer=ee.Reducer.mean(),
161
- geometry=poi,
162
- scale=10
163
- ).getInfo()['LAI']
164
-
165
- chl_val = chl.reduceRegion(
166
- reducer=ee.Reducer.mean(),
167
- geometry=poi,
168
- scale=10
169
- ).getInfo()['CHL']
170
 
171
- return {
172
- 'urls': {
173
- 'ndvi': ndvi_url,
174
- 'ndwi': ndwi_url,
175
- 'lai': lai_url,
176
- 'chl': chl_url
177
- },
178
- 'values': {
179
- 'ndvi': ndvi_val,
180
- 'ndwi': ndwi_val,
181
- 'lai': lai_val,
182
- 'chl': chl_val
183
- }
184
  }
185
-
186
- # Get time series data for indices
187
- @st.cache_data(ttl=3600)
188
- def get_time_series(lat, lon, start_date, end_date):
189
- # Define point of interest
190
- poi = ee.Geometry.Point([lon, lat])
191
-
192
- # Define region around the point
193
- region = poi.buffer(500) # 500m buffer around the point
194
-
195
- # Load Sentinel-2 collection for the time period
196
- s2_collection = ee.ImageCollection('COPERNICUS/S2_SR') \
197
- .filterBounds(region) \
198
- .filterDate(start_date, end_date) \
199
- .filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
200
-
201
- # Create a function to calculate indices for each image
202
- def add_indices(image):
203
- ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
204
- ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
205
- lai = ndvi.multiply(3.618).subtract(0.118).rename('LAI')
206
- chl = image.select('B8').divide(image.select('B5')).rename('CHL')
207
-
208
- # Get the timestamp
209
- date = ee.Date(image.get('system:time_start'))
210
-
211
- # Get values at the point
212
- ndvi_val = ndvi.reduceRegion(
213
- reducer=ee.Reducer.mean(),
214
- geometry=poi,
215
- scale=10
216
- ).get('NDVI')
217
-
218
- ndwi_val = ndwi.reduceRegion(
219
- reducer=ee.Reducer.mean(),
220
- geometry=poi,
221
- scale=10
222
- ).get('NDWI')
223
-
224
- lai_val = lai.reduceRegion(
225
- reducer=ee.Reducer.mean(),
226
- geometry=poi,
227
- scale=10
228
- ).get('LAI')
229
-
230
- chl_val = chl.reduceRegion(
231
- reducer=ee.Reducer.mean(),
232
- geometry=poi,
233
- scale=10
234
- ).get('CHL')
235
-
236
- # Return a feature with these properties
237
- return ee.Feature(None, {
238
- 'date': date.format('YYYY-MM-dd'),
239
- 'ndvi': ndvi_val,
240
- 'ndwi': ndwi_val,
241
- 'lai': lai_val,
242
- 'chl': chl_val
243
- })
244
-
245
- # Map the function over the collection
246
- indices_fc = s2_collection.map(add_indices)
247
-
248
- # Get the data as a list of dictionaries
249
- indices_data = indices_fc.getInfo()['features']
250
-
251
- # Convert to pandas DataFrame
252
- if indices_data:
253
- data_list = [{'date': feature['properties']['date'],
254
- 'ndvi': feature['properties']['ndvi'],
255
- 'ndwi': feature['properties']['ndwi'],
256
- 'lai': feature['properties']['lai'],
257
- 'chl': feature['properties']['chl']}
258
- for feature in indices_data]
259
-
260
- df = pd.DataFrame(data_list)
261
- df['date'] = pd.to_datetime(df['date'])
262
- return df.sort_values('date')
263
- else:
264
- return pd.DataFrame(columns=['date', 'ndvi', 'ndwi', 'lai', 'chl'])
265
-
266
- # Get weather data from OpenWeather API
267
- @st.cache_data(ttl=3600)
268
- def get_weather_data(lat, lon):
269
- api_key = "ed47316a45379e2221a75f813229fb46"
270
- url = f"https://api.openweathermap.org/data/2.5/onecall?lat={lat}&lon={lon}&exclude=minutely,hourly,alerts&appid={api_key}&units=metric"
271
 
272
- response = requests.get(url)
 
 
 
273
 
274
- if response.status_code == 200:
275
- data = response.json()
276
-
277
- # Current weather
278
- current = data.get('current', {})
279
- current_weather = {
280
- 'temp': current.get('temp'),
281
- 'humidity': current.get('humidity'),
282
- 'wind_speed': current.get('wind_speed'),
283
- 'description': current.get('weather', [{}])[0].get('description', '')
284
- }
285
-
286
- # Daily forecast for the next 7 days
287
- daily = data.get('daily', [])
288
- daily_forecast = []
289
-
290
- for day in daily:
291
- date = datetime.fromtimestamp(day.get('dt')).strftime('%Y-%m-%d')
292
- daily_forecast.append({
293
- 'date': date,
294
- 'temp_min': day.get('temp', {}).get('min'),
295
- 'temp_max': day.get('temp', {}).get('max'),
296
- 'humidity': day.get('humidity'),
297
- 'wind_speed': day.get('wind_speed')
298
- })
299
-
300
- return {
301
- 'current': current_weather,
302
- 'forecast': daily_forecast
303
- }
304
- else:
305
- st.error(f"Failed to fetch weather data: {response.status_code}")
306
- return None
307
-
308
- # Display folium map with satellite data
309
- def display_satellite_map(lat, lon, tile_url, layer_name):
310
- # Create map centered on the farm
311
- m = folium.Map(location=[lat, lon], zoom_start=15)
312
-
313
- # Add base tiles
314
- folium.TileLayer('OpenStreetMap').add_to(m)
315
- folium.TileLayer('Stamen Terrain').add_to(m)
316
-
317
- # Add satellite data tile layer
318
- folium.TileLayer(
319
- tiles=tile_url,
320
- attr='Google Earth Engine',
321
- name=layer_name,
322
- overlay=True,
323
- opacity=0.7
324
- ).add_to(m)
325
-
326
- # Add marker for the farm
327
- folium.Marker(
328
- [lat, lon],
329
- popup=f"Farm Location\nLat: {lat}\nLon: {lon}"
330
- ).add_to(m)
331
-
332
- # Add layer control
333
- folium.LayerControl().add_to(m)
334
-
335
- return m
336
-
337
- # Initialize Earth Engine
338
- ee_initialized = initialize_ee()
339
-
340
- if ee_initialized:
341
- # Load farm data
342
- farm_coords, farm_db = load_farm_data()
343
 
344
- # Create sidebar for selection
345
- st.sidebar.title("Farm Selection")
 
 
346
 
347
- # Select farm from dropdown
348
- farm_list = farm_coords['name'].unique().tolist()
349
- selected_farm = st.sidebar.selectbox("Select Farm", farm_list)
 
 
 
350
 
351
- # Get the selected farm data
352
- farm_row = farm_coords[farm_coords['name'] == selected_farm].iloc[0]
353
- farm_lat = farm_row['latitude']
354
- farm_lon = farm_row['longitude']
355
- farm_age = farm_row['age']
356
- farm_variety = farm_row['variety']
357
 
358
- # Get farm information from database
359
- farm_info = farm_db[farm_db['مزرعه'] == selected_farm]
 
 
 
360
 
361
- # Select date range
362
- st.sidebar.subheader("Date Selection")
 
 
363
 
364
- # Default to last 30 days
365
- end_date = datetime.now()
366
- start_date = end_date - timedelta(days=30)
 
 
367
 
368
- start_date_input = st.sidebar.date_input("Start Date", start_date)
369
- end_date_input = st.sidebar.date_input("End Date", end_date)
 
 
 
370
 
371
- # Convert to string format for Earth Engine
372
- start_date_str = start_date_input.strftime('%Y-%m-%d')
373
- end_date_str = end_date_input.strftime('%Y-%m-%d')
374
 
375
- # Get days in database for the selected farm
376
- if not farm_info.empty:
377
- days = farm_info['روز'].unique().tolist()
378
- selected_day = st.sidebar.selectbox("Select Day", days)
379
-
380
- # Filter farm info by selected day
381
- day_info = farm_info[farm_info['روز'] == selected_day]
382
-
383
- if not day_info.empty:
384
- # Display farm details
385
- with st.expander("Farm Details", expanded=True):
386
- col1, col2, col3, col4 = st.columns(4)
387
-
388
- with col1:
389
- st.metric("Farm", selected_farm)
390
-
391
- with col2:
392
- st.metric("Age", farm_age)
393
-
394
- with col3:
395
- st.metric("Variety", farm_variety)
396
-
397
- with col4:
398
- st.metric("Area", f"{day_info.iloc[0]['مساحت زیرمجموعه']} ha")
399
-
400
- # Fetch satellite data
401
- with st.spinner("Fetching satellite data..."):
402
- indices_data = get_satellite_indices(
403
- farm_lat,
404
- farm_lon,
405
- [start_date_str, end_date_str]
406
- )
407
-
408
- # Get time series data for the period
409
- time_series = get_time_series(
410
- farm_lat,
411
- farm_lon,
412
- start_date_str,
413
- end_date_str
414
- )
415
 
416
- # Fetch weather data
417
- with st.spinner("Fetching weather data..."):
418
- weather_data = get_weather_data(farm_lat, farm_lon)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419
 
420
- # Display tabs
421
- tab1, tab2, tab3, tab4 = st.tabs([
422
- "Current Status",
423
- "Time Series Analysis",
424
- "Weather Data",
425
- "Weekly Report"
426
- ])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427
 
428
  with tab1:
429
- if indices_data:
430
- # Display satellite indices
431
- st.subheader("Vegetation Indices")
432
-
433
- col1, col2, col3, col4 = st.columns(4)
434
-
435
- with col1:
436
- ndvi_val = indices_data['values']['ndvi']
437
- ndvi_color = "green" if ndvi_val > 0.5 else "yellow" if ndvi_val > 0.2 else "red"
438
- st.metric("NDVI", f"{ndvi_val:.3f}", delta="Good" if ndvi_val > 0.5 else "Medium" if ndvi_val > 0.2 else "Poor", delta_color="normal")
439
-
440
- with col2:
441
- ndwi_val = indices_data['values']['ndwi']
442
- st.metric("NDWI", f"{ndwi_val:.3f}", delta="Good" if ndwi_val > 0 else "Low", delta_color="normal")
443
-
444
- with col3:
445
- lai_val = indices_data['values']['lai']
446
- st.metric("LAI", f"{lai_val:.3f}", delta="Good" if lai_val > 2 else "Medium" if lai_val > 1 else "Poor", delta_color="normal")
447
-
448
- with col4:
449
- chl_val = indices_data['values']['chl']
450
- st.metric("CHL", f"{chl_val:.3f}", delta="Good" if chl_val > 2 else "Medium" if chl_val > 1.5 else "Poor", delta_color="normal")
451
-
452
- # Display maps
453
- st.subheader("Satellite Maps")
454
-
455
- map_tabs = st.tabs(["NDVI", "NDWI", "LAI", "CHL"])
456
-
457
- with map_tabs[0]:
458
- ndvi_map = display_satellite_map(
459
- farm_lat,
460
- farm_lon,
461
- indices_data['urls']['ndvi'],
462
- "NDVI"
463
- )
464
- st.write("NDVI (Normalized Difference Vegetation Index) - Higher values (green) indicate healthy vegetation")
465
- folium_static(ndvi_map, width=800, height=500)
466
-
467
- with map_tabs[1]:
468
- ndwi_map = display_satellite_map(
469
- farm_lat,
470
- farm_lon,
471
- indices_data['urls']['ndwi'],
472
- "NDWI"
473
- )
474
- st.write("NDWI (Normalized Difference Water Index) - Higher values (blue) indicate more water content")
475
- folium_static(ndwi_map, width=800, height=500)
476
-
477
- with map_tabs[2]:
478
- lai_map = display_satellite_map(
479
- farm_lat,
480
- farm_lon,
481
- indices_data['urls']['lai'],
482
- "LAI"
483
- )
484
- st.write("LAI (Leaf Area Index) - Higher values (darker green) indicate more leaf area")
485
- folium_static(lai_map, width=800, height=500)
486
-
487
- with map_tabs[3]:
488
- chl_map = display_satellite_map(
489
- farm_lat,
490
- farm_lon,
491
- indices_data['urls']['chl'],
492
- "CHL"
493
- )
494
- st.write("CHL (Chlorophyll Content) - Higher values (green) indicate more chlorophyll")
495
- folium_static(chl_map, width=800, height=500)
496
- else:
497
- st.warning("No satellite data available for the selected date range. Try extending the date range.")
498
 
499
  with tab2:
500
- if not time_series.empty:
501
- st.subheader("Time Series Analysis")
502
-
503
- # Plot time series
504
- ts_tabs = st.tabs(["NDVI", "NDWI", "LAI", "CHL", "Comparison"])
505
-
506
- with ts_tabs[0]:
507
- fig = px.line(
508
- time_series,
509
- x='date',
510
- y='ndvi',
511
- title=f"NDVI Time Series for {selected_farm}",
512
- labels={"date": "Date", "ndvi": "NDVI Value"},
513
- markers=True
514
- )
515
- st.plotly_chart(fig, use_container_width=True)
516
-
517
- with ts_tabs[1]:
518
- fig = px.line(
519
- time_series,
520
- x='date',
521
- y='ndwi',
522
- title=f"NDWI Time Series for {selected_farm}",
523
- labels={"date": "Date", "ndwi": "NDWI Value"},
524
- markers=True
525
- )
526
- st.plotly_chart(fig, use_container_width=True)
527
-
528
- with ts_tabs[2]:
529
- fig = px.line(
530
- time_series,
531
- x='date',
532
- y='lai',
533
- title=f"LAI Time Series for {selected_farm}",
534
- labels={"date": "Date", "lai": "LAI Value"},
535
- markers=True
536
- )
537
- st.plotly_chart(fig, use_container_width=True)
538
-
539
- with ts_tabs[3]:
540
- fig = px.line(
541
- time_series,
542
- x='date',
543
- y='chl',
544
- title=f"CHL Time Series for {selected_farm}",
545
- labels={"date": "Date", "chl": "CHL Value"},
546
- markers=True
547
- )
548
- st.plotly_chart(fig, use_container_width=True)
549
-
550
- with ts_tabs[4]:
551
- # Comparison of all indices
552
- fig = go.Figure()
553
-
554
- fig.add_trace(go.Scatter(
555
- x=time_series['date'],
556
- y=time_series['ndvi'],
557
- mode='lines+markers',
558
- name='NDVI'
559
- ))
560
-
561
- fig.add_trace(go.Scatter(
562
- x=time_series['date'],
563
- y=time_series['ndwi'],
564
- mode='lines+markers',
565
- name='NDWI'
566
- ))
567
-
568
- fig.add_trace(go.Scatter(
569
- x=time_series['date'],
570
- y=time_series['lai'],
571
- mode='lines+markers',
572
- name='LAI'
573
- ))
574
-
575
- fig.add_trace(go.Scatter(
576
- x=time_series['date'],
577
- y=time_series['chl'],
578
- mode='lines+markers',
579
- name='CHL'
580
- ))
581
-
582
- fig.update_layout(
583
- title=f"Vegetation Indices Comparison for {selected_farm}",
584
- xaxis_title="Date",
585
- yaxis_title="Index Value",
586
- legend_title="Index"
587
- )
588
-
589
- st.plotly_chart(fig, use_container_width=True)
590
  else:
591
- st.warning("No time series data available for the selected date range. Try extending the date range.")
592
 
593
  with tab3:
594
- if weather_data:
595
- st.subheader("Weather Data")
596
-
597
- # Current weather
598
- current = weather_data['current']
599
- forecast = weather_data['forecast']
600
-
601
- col1, col2, col3 = st.columns(3)
602
-
603
- with col1:
604
- st.metric("Temperature", f"{current['temp']}°C")
605
-
606
- with col2:
607
- st.metric("Humidity", f"{current['humidity']}%")
608
-
609
- with col3:
610
- st.metric("Wind Speed", f"{current['wind_speed']} m/s")
611
-
612
- st.write(f"Current conditions: {current['description'].title()}")
613
-
614
- # Weather forecast
615
- st.subheader("7-Day Forecast")
616
-
617
- # Create forecast dataframe
618
- forecast_df = pd.DataFrame(forecast)
619
-
620
- # Plot temperature forecast
621
  fig = go.Figure()
622
-
623
- fig.add_trace(go.Scatter(
624
- x=forecast_df['date'],
625
- y=forecast_df['temp_max'],
626
- mode='lines+markers',
627
- name='Max Temp',
628
- line=dict(color='red')
629
- ))
630
-
631
  fig.add_trace(go.Scatter(
632
- x=forecast_df['date'],
633
- y=forecast_df['temp_min'],
634
  mode='lines+markers',
635
- name='Min Temp',
636
- line=dict(color='blue')
 
637
  ))
638
-
639
  fig.update_layout(
640
- title="Temperature Forecast",
641
- xaxis_title="Date",
642
- yaxis_title="Temperature (°C)",
643
- legend_title="Temperature"
 
 
 
644
  )
645
-
646
  st.plotly_chart(fig, use_container_width=True)
647
-
648
- # Plot humidity forecast
649
- fig = px.line(
650
- forecast_df,
651
- x='date',
652
- y='humidity',
653
- title="Humidity Forecast",
654
- labels={"date": "Date", "humidity": "Humidity (%)"},
655
- markers=True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
656
  )
657
-
658
- st.plotly_chart(fig, use_container_width=True)
659
-
660
- # Plot wind speed forecast
661
- fig = px.line(
662
- forecast_df,
663
- x='date',
664
- y='wind_speed',
665
- title="Wind Speed Forecast",
666
- labels={"date": "Date", "wind_speed": "Wind Speed (m/s)"},
667
- markers=True
668
  )
669
-
670
- st.plotly_chart(fig, use_container_width=True)
671
  else:
672
- st.warning("Weather data could not be retrieved. Please check your internet connection.")
 
 
 
 
673
 
674
- with tab4:
675
- st.subheader("Weekly Report")
 
 
 
676
 
677
- # Get the last 7 days of data
678
- last_7_days = datetime.now() - timedelta(days=7)
679
- last_7_days_str = last_7_days.strftime('%Y-%m-%d')
 
 
 
680
 
681
- with st.spinner("Generating weekly report..."):
682
- # Get weekly time series
683
- weekly_data = get_time_series(
684
- farm_lat,
685
- farm_lon,
686
- last_7_days_str,
687
- end_date_str
688
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
689
 
690
- if not weekly_data.empty:
691
- # Weekly summary
692
- weekly_avg = weekly_data.mean()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693
 
694
  col1, col2, col3, col4 = st.columns(4)
695
 
696
  with col1:
697
- st.metric("Avg NDVI", f"{weekly_avg['ndvi']:.3f}")
 
 
 
698
 
699
  with col2:
700
- st.metric("Avg NDWI", f"{weekly_avg['ndwi']:.3f}")
 
 
 
701
 
702
  with col3:
703
- st.metric("Avg LAI", f"{weekly_avg['lai']:.3f}")
 
 
 
704
 
705
  with col4:
706
- st.metric("Avg CHL", f"{weekly_avg['chl']:.3f}")
 
 
 
707
 
708
- # Plot weekly trends
709
- st.subheader("Weekly Trends")
710
-
711
- fig = go.Figure()
712
-
713
- fig.add_trace(go.Scatter(
714
- x=weekly_data['date'],
715
- y=weekly_data['ndvi'],
716
- mode='lines+markers',
717
- name='NDVI'
718
- ))
 
 
719
 
720
- fig.add_trace(go.Scatter(
721
- x=weekly_data['date'],
722
- y=weekly_data['lai'],
723
- mode='lines+markers',
724
- name='LAI'
725
- ))
726
 
 
 
 
 
 
 
 
727
  fig.update_layout(
728
- title=f"NDVI and LAI Weekly Trends for {selected_farm}",
729
- xaxis_title="Date",
730
- yaxis_title="Index Value",
731
- legend_title="Index"
732
  )
733
-
734
  st.plotly_chart(fig, use_container_width=True)
735
-
736
- # Weekly change
737
- if len(weekly_data) > 1:
738
- first_day = weekly_data.iloc[0]
739
- last_day = weekly_data.iloc[-1]
740
-
741
- ndvi_change = ((last_day['ndvi'] - first_day['ndvi']) / first_day['ndvi']) * 100 if first_day['ndvi'] != 0 else 0
742
- lai_change = ((last_day['lai'] - first_day['lai']) / first_day['lai']) * 100 if first_day['lai'] != 0 else 0
743
-
744
- col1, col2 = st.columns(2)
745
-
746
- with col1:
747
- st.metric("NDVI Change", f"{ndvi_change:.2f}%", delta=f"{ndvi_change:.2f}%")
748
-
749
- with col2:
750
- st.metric("LAI Change", f"{lai_change:.2f}%", delta=f"{lai_change:.2f}%")
751
-
752
- # Growth status assessment
753
- st.subheader("Growth Status Assessment")
754
-
755
- if ndvi_change > 5 and lai_change > 5:
756
- st.success("✅ Healthy Growth: The crop is showing good growth patterns with increasing vegetation indices.")
757
- elif ndvi_change > 0 and lai_change > 0:
758
- st.info("ℹ️ Moderate Growth: The crop is growing, but at a slower rate than expected.")
759
- elif ndvi_change < 0 or lai_change < 0:
760
- st.warning("⚠️ Growth Concern: The crop is showing signs of stress or declining health.")
761
-
762
- # Recommendations
763
- st.subheader("Recommendations")
764
-
765
- if ndvi_change < 0:
766
- st.warning("Consider checking for pest infestations or nutrient deficiencies.")
767
-
768
- if ndwi_val < -0.3:
769
- st.warning("Water stress detected. Consider irrigation schedule adjustments.")
770
-
771
- if lai_val < 1.5:
772
- st.warning("Low leaf area index. Investigate possible causes for poor canopy development.")
773
-
774
- if chl_val < 1.5:
775
- st.warning("Low chlorophyll content. Consider nitrogen fertilization.")
776
  else:
777
- st.warning("No data available for the last 7 days. Check your satellite data availability.")
778
- else:
779
- st.error("Failed to initialize Google Earth Engine. Please check your credentials.")
780
 
 
 
 
 
 
 
 
1
  import streamlit as st
 
 
2
  import pandas as pd
3
  import numpy as np
4
+ import folium
 
 
 
5
  from streamlit_folium import folium_static
6
+ import ee
7
+ import os
8
+ import json
9
+ import time
10
+ from datetime import datetime, timedelta
11
  import plotly.express as px
12
  import plotly.graph_objects as go
13
+ import altair as alt
14
+ from streamlit_option_menu import option_menu
15
+ from streamlit_lottie import st_lottie
16
+ import requests
17
+ import hydralit_components as hc
18
+ from streamlit_extras.colored_header import colored_header
19
+ from streamlit_extras.metric_cards import style_metric_cards
20
+ from streamlit_extras.chart_container import chart_container
21
+ from streamlit_extras.add_vertical_space import add_vertical_space
22
+ from streamlit_card import card
23
+ import pydeck as pdk
24
+ import math
25
+ from sklearn.linear_model import LinearRegression
26
 
27
+ # تنظیمات صفحه با تم سفارشی
28
  st.set_page_config(
29
+ page_title="سامانه هوشمند پایش مزارع نیشکر دهخدا",
30
  page_icon="🌿",
31
  layout="wide",
32
  initial_sidebar_state="expanded"
33
  )
34
 
35
+ # CSS سفارشی با طراحی سبز مدرن و انیمیشن‌ها
36
+ st.markdown("""
37
+ <style>
38
+ @import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@100;200;300;400;500;600;700;800;900&display=swap');
 
 
 
 
39
 
40
+ * {
41
+ font-family: 'Vazirmatn', sans-serif !important;
42
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
 
44
+ /* استایل کلی صفحه */
45
+ .main {
46
+ background: linear-gradient(135deg, #f5f7fa 0%, #e4e9f2 100%);
47
+ }
48
 
49
+ /* استایل هدر */
50
+ .main-header {
51
+ background: linear-gradient(90deg, #1a8754 0%, #115740 100%);
52
+ padding: 1.5rem;
53
+ border-radius: 12px;
54
+ box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
55
+ margin-bottom: 2rem;
56
+ position: relative;
57
+ overflow: hidden;
58
+ animation: header-glow 3s infinite alternate;
59
+ }
60
 
61
+ @keyframes header-glow {
62
+ 0% { box-shadow: 0 8px 32px rgba(26, 135, 84, 0.1); }
63
+ 100% { box-shadow: 0 8px 32px rgba(26, 135, 84, 0.3); }
64
+ }
 
 
 
65
 
66
+ .main-header h1 {
67
+ color: white;
68
+ font-weight: 700;
69
+ margin: 0;
70
+ position: relative;
71
+ z-index: 1;
72
+ }
73
 
74
+ .main-header p {
75
+ color: rgba(255, 255, 255, 0.8);
76
+ margin: 0;
77
+ position: relative;
78
+ z-index: 1;
79
+ }
80
 
81
+ /* استایل منوی ناوبری */
82
+ .st-emotion-cache-1lcbz7b {
83
+ background-color: transparent !important;
84
+ padding: 0 !important;
85
+ margin-bottom: 20px !important;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86
  }
87
 
88
+ .st-emotion-cache-1j7d69d {
89
+ --hover-color: #e9f7ef !important;
90
+ border-radius: 10px !important;
91
+ font-size: 16px !important;
92
+ text-align: center !important;
93
+ margin: 0 !important;
94
  }
95
 
96
+ .st-emotion-cache-1j7d69d:hover {
97
+ background-color: #e9f7ef !important;
 
 
98
  }
99
 
100
+ .st-emotion-cache-1j7d69d[data-selected="true"] {
101
+ background-color: #1a8754 !important;
102
+ color: white !important;
103
+ font-weight: 600 !important;
104
  }
105
 
106
+ .st-emotion-cache-1m5q2i0 {
107
+ color: #1a8754 !important;
108
+ font-size: 18px !important;
109
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
+ /* استایل کارت‌های متریک */
112
+ .metric-card {
113
+ background: white;
114
+ border-radius: 12px;
115
+ padding: 1.5rem;
116
+ box-shadow: 0 4px 20px rgba(0, 0, 0, 0.05);
117
+ transition: all 0.3s ease;
118
+ text-align: center;
 
 
 
 
 
119
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
120
 
121
+ .metric-card:hover {
122
+ transform: translateY(-5px);
123
+ box-shadow: 0 8px 30px rgba(0, 0, 0, 0.1);
124
+ }
125
 
126
+ .metric-card .metric-value {
127
+ font-size: 2.5rem;
128
+ font-weight: 700;
129
+ color: #1a8754;
130
+ margin-bottom: 0.5rem;
131
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
+ .metric-card .metric-label {
134
+ font-size: 1rem;
135
+ color: #6c757d;
136
+ }
137
 
138
+ /* استایل کانتینر نقشه */
139
+ .map-container {
140
+ border-radius: 12px;
141
+ overflow: hidden;
142
+ box-shadow: 0 4px 20px rgba(0, 0, 0, 0.05);
143
+ }
144
 
145
+ /* استایل تب‌ها */
146
+ .stTabs [data-baseweb="tab-list"] {
147
+ gap: 8px;
148
+ }
 
 
149
 
150
+ .stTabs [data-baseweb="tab"] {
151
+ border-radius: 4px 4px 0px 0px;
152
+ padding: 10px 16px;
153
+ background-color: #f8f9fa;
154
+ }
155
 
156
+ .stTabs [aria-selected="true"] {
157
+ background-color: #1a8754 !important;
158
+ color: white !important;
159
+ }
160
 
161
+ /* استایل سایدبار */
162
+ [data-testid="stSidebar"] {
163
+ background-color: #ffffff;
164
+ border-right: 1px solid #e9ecef;
165
+ }
166
 
167
+ /* انیمیشن‌ها */
168
+ @keyframes fadeIn {
169
+ 0% { opacity: 0; transform: translateY(20px); }
170
+ 100% { opacity: 1; transform: translateY(0); }
171
+ }
172
 
173
+ .animate-fadeIn {
174
+ animation: fadeIn 0.5s ease forwards;
175
+ }
176
 
177
+ /* استایل دکمه‌ها */
178
+ .stButton>button {
179
+ border-radius: 50px;
180
+ padding: 0.5rem 1.5rem;
181
+ font-weight: 600;
182
+ transition: all 0.3s ease;
183
+ border: none;
184
+ background: linear-gradient(90deg, #1a8754 0%, #115740 100%);
185
+ color: white;
186
+ }
187
+
188
+ .stButton>button:hover {
189
+ transform: translateY(-2px);
190
+ box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
191
+ background: linear-gradient(90deg, #115740 0%, #1a8754 100%);
192
+ }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
193
 
194
+ /* استایل فوتر */
195
+ footer {
196
+ position: fixed;
197
+ left: 0;
198
+ bottom: 0;
199
+ width: 100%;
200
+ background-color: #1a8754;
201
+ color: white;
202
+ text-align: center;
203
+ padding: 10px 0;
204
+ font-family: 'Vazirmatn', sans-serif;
205
+ }
206
+ </style>
207
+ """, unsafe_allow_html=True)
208
+
209
+ # تابع بارگذاری داده‌ها
210
+ @st.cache_data
211
+ def load_farm_data():
212
+ try:
213
+ df = pd.read_csv("کراپ لاگ کلی (1).csv", encoding='utf-8-sig')
214
+ return df
215
+ except Exception as e:
216
+ st.error(f"خطا در بارگذاری داده‌های کراپ لاگ: {e}")
217
+ return pd.DataFrame()
218
+
219
+ @st.cache_data
220
+ def load_coordinates_data():
221
+ try:
222
+ coords_df = pd.read_csv("farm_coordinates.csv", encoding='utf-8-sig')
223
+ return coords_df
224
+ except Exception as e:
225
+ st.error(f"خطا در بارگذاری داده‌های مختصات: {e}")
226
+ return pd.DataFrame()
227
+
228
+ @st.cache_data
229
+ def load_day_data():
230
+ try:
231
+ day_df = pd.read_csv("پایگاه داده (1).csv", encoding='utf-8-sig')
232
+ return day_df
233
+ except Exception as e:
234
+ st.error(f"خطا در بارگذاری داده‌های روز: {e}")
235
+ return pd.DataFrame()
236
+
237
+ # تابع بارگذاری انیمیشن
238
+ @st.cache_data
239
+ def load_lottie_url(url: str):
240
+ r = requests.get(url)
241
+ if r.status_code != 200:
242
+ return None
243
+ return r.json()
244
+
245
+ # مقداردهی اولیه Earth Engine
246
+ @st.cache_resource
247
+ def initialize_earth_engine():
248
+ try:
249
+ service_account = 'dehkhodamap-e9f0da4ce9f6514021@ee-esmaeilkiani13877.iam.gserviceaccount.com'
250
+ credentials_dict = {
251
+ "type": "service_account",
252
+ "project_id": "ee-esmaeilkiani13877",
253
+ "private_key_id": "cfdea6eaf4115cb6462626743e4b15df85fd0c7f",
254
+ "private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQCjeOvgKi+gWK6k\n2/0RXOA3LAo51DVxA1ja9v0qFOn4FNOStxkwlKvcK8yDQNb53FPORHFIUHvev3y7\niHr/UEUqnn5Rzjbf0k3qWB/fS377/UP4VznMsFpKiHNxCBtaNS8KLk6Rat6Y7Xfm\nJfpSU7ZjYZmVc81M/7iFofGUSJoHYpxhyt3rjp53huxJNNW5e12TFnLkyg1Ja/9X\nGMTt+vjVcO4XhQCIlaGVdSKS2sHlHgzpzE6KtuUKjDMEBqPkWF4xc16YavYltwPd\nqULCu2/t6dczhYL4NEFj8wL+KJqOojfsyoWmzqPFx1Bbxk4BVPk/lslq9+m9p5kq\nSCG0/9W9AgMBAAECggEAEGchw+x3uu8rFv+79PIMzXxtyj+w3RYo5E/EN2TB1VLB\nqAcXT/ibBgyfCMyIxamF/zx+4XKx+zfbnDWlodi8F/qvUiYO+4ZuqwUMras1orNX\nDqQx+If5h2EJtF3L4NFVVwAuggjnLREm5sEIzRn5Qx+X+ZcVEpTWPxJw2yAt1G+3\nk311KqD+zR7jQfchXU4xQQ1ZoHkdAJ/DPGun6x+HUOq7Gus73A6IzLp12ZoiHN3n\nkY+lG8cMs039QAe/OhZFEo5I9cNSaI688HmsLRivZ26WoPEnwcN0MHQGtXqGmMUI\nCcpgJqllqdWMuBlYcpSadn7rZzPujSlzIxkvieLeAQKBgQDNTYUWZdGbA2sHcBpJ\nrqKwDYF/AwZtjx+hXHVBRbR6DJ1bO2P9n51ioTMP/H9K61OBAMZ7w71xJ2I+9Snv\ncYumPWoiUwiOhTh3O7nYz6mR7sK0HuUCZfYdaxJVnLgNCgj+w9AxYnkzOyL9/QvJ\nknrlMKf4H59NbapBqy5spilq1QKBgQDL1wkGHhoTuLb5Xp3X3CX4S7WMke4T01bO\nPpMmlewVgH5lK5wTcZjB8QRO2QFQtUZTP/Ghv6ZH4h/3P9/ZIF3hV5CSsUkr/eFf\nMY+fQL1K/puwfZbSDcH1GtDToOyoLFIvPXBJo0Llg/oF2TK1zGW3cPszeDf/Tm6x\nUwUMw2BjSQKBgEJzAMyLEBi4NoAlzJxkpcuN04gkloQHexljL6B8yzlls9i/lFGW\nw/4UZs6ZzymUmWZ7tcKBTGO/d5EhEP2rJqQb5KpPbcmTXP9amYCPVjchrGtYRI9O\nKSbEbR7ApuGxic/L2Sri0I/AaEcFDDel7ZkY8oTg11LcV+sBWPlZnrYxAoGBALXj\n/DlpQvu2KA/9TfwAhiE57Zax4S/vtdX0IHqd7TyCnEbK00rGYvksiBuTqIjMOSSw\nOn2K9mXOcZe/d4/YQe2CpY9Ag3qt4R2ArBf/POpep66lYp+thxWgCBfP0V1/rxZY\nTIppFJiZW9E8LvPqoBlAx+b1r4IyCrRQ0IDDFo+BAoGBAMCff4XKXHlV2SDOL5uh\nV/f9ApEdF4leuo+hoMryKuSQ9Y/H0A/Lzw6KP5FLvVtqc0Kw2D1oLy8O72a1xwfY\n8dpZMNzKAWWS7viN0oC+Ebj2Foc2Mn/J6jdhtP/YRLTqvoTWCa2rVcn4R1BurMIf\nLa4DJE9BagGdVNTDtynBhKhZ\n-----END PRIVATE KEY-----\n",
255
+ "client_email": "dehkhodamap-e9f0da4ce9f6514021@ee-esmaeilkiani13877.iam.gserviceaccount.com",
256
+ "client_id": "113062529451626176784",
257
+ "auth_uri": "https://accounts.google.com/o/oauth2/auth",
258
+ "token_uri": "https://oauth2.googleapis.com/token",
259
+ "auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
260
+ "client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dehkhodamap-e9f0da4ce9f6514021%40ee-esmaeilkiani13877.iam.gserviceaccount.com",
261
+ "universe_domain": "googleapis.com"
262
+ }
263
+ credentials_file = 'ee-esmaeilkiani13877-cfdea6eaf411.json'
264
+ with open(credentials_file, 'w') as f:
265
+ json.dump(credentials_dict, f)
266
+ credentials = ee.ServiceAccountCredentials(service_account, credentials_file)
267
+ ee.Initialize(credentials)
268
+ os.remove(credentials_file)
269
+ return True
270
+ except Exception as e:
271
+ st.error(f"خطا در اتصال به Earth Engine: {e}")
272
+ return False
273
+
274
+ # تابع ایجاد نقشه Earth Engine
275
+ def create_ee_map(farm_id, date_str, layer_type="NDVI"):
276
+ try:
277
+ farm_row = coordinates_df[coordinates_df['مزرعه'] == farm_id].iloc[0]
278
+ lat, lon = farm_row['عرض جغرافیایی'], farm_row['طول جغرافیایی']
279
+ m = folium.Map(location=[lat, lon], zoom_start=14, tiles='CartoDB positron')
280
+ date_obj = datetime.strptime(date_str, '%Y-%m-%d')
281
+ start_date = (date_obj - timedelta(days=5)).strftime('%Y-%m-%d')
282
+ end_date = (date_obj + timedelta(days=5)).strftime('%Y-%m-%d')
283
+ region = ee.Geometry.Point([lon, lat]).buffer(1500)
284
+ s2 = ee.ImageCollection('COPERNICUS/S2_SR') \
285
+ .filterDate(start_date, end_date) \
286
+ .filterBounds(region) \
287
+ .sort('CLOUDY_PIXEL_PERCENTAGE') \
288
+ .first()
289
+ if layer_type == "NDVI":
290
+ index = s2.normalizedDifference(['B8', 'B4']).rename('NDVI')
291
+ viz_params = {'min': -0.2, 'max': 0.8, 'palette': ['#ff0000', '#ff4500', '#ffd700', '#32cd32', '#006400']}
292
+ legend_title = 'شاخص پوشش گیاهی (NDVI)'
293
+ elif layer_type == "NDMI":
294
+ index = s2.normalizedDifference(['B8', 'B11']).rename('NDMI')
295
+ viz_params = {'min': -0.5, 'max': 0.5, 'palette': ['#8b0000', '#ff8c00', '#00ced1', '#00b7eb', '#00008b']}
296
+ legend_title = 'شاخص رطوبت (NDMI)'
297
+ elif layer_type == "EVI":
298
+ nir = s2.select('B8')
299
+ red = s2.select('B4')
300
+ blue = s2.select('B2')
301
+ index = nir.subtract(red).multiply(2.5).divide(nir.add(red.multiply(6)).subtract(blue.multiply(7.5)).add(1)).rename('EVI')
302
+ viz_params = {'min': 0, 'max': 1, 'palette': ['#d73027', '#f46d43', '#fdae61', '#fee08b', '#4caf50']}
303
+ legend_title = 'شاخص پیشرفته گیاهی (EVI)'
304
+ elif layer_type == "NDWI":
305
+ index = s2.normalizedDifference(['B3', 'B8']).rename('NDWI')
306
+ viz_params = {'min': -0.5, 'max': 0.5, 'palette': ['#00008b', '#00b7eb', '#add8e6', '#fdae61', '#d73027']}
307
+ legend_title = 'شاخص آب (NDWI)'
308
+ map_id_dict = ee.Image(index).getMapId(viz_params)
309
+ folium.TileLayer(
310
+ tiles=map_id_dict['tile_fetcher'].url_format,
311
+ attr='Google Earth Engine',
312
+ name=layer_type,
313
+ overlay=True,
314
+ control=True
315
+ ).add_to(m)
316
+ folium.Marker(
317
+ [lat, lon],
318
+ popup=f'مزرعه {farm_id}',
319
+ tooltip=f'مزرعه {farm_id}',
320
+ icon=folium.Icon(color='green', icon='leaf')
321
+ ).add_to(m)
322
+ folium.Circle(
323
+ [lat, lon],
324
+ radius=1500,
325
+ color='green',
326
+ fill=True,
327
+ fill_color='green',
328
+ fill_opacity=0.1
329
+ ).add_to(m)
330
+ folium.LayerControl().add_to(m)
331
+ legend_html = '''
332
+ <div style="position: fixed;
333
+ bottom: 50px; right: 50px;
334
+ border: 2px solid grey; z-index: 9999;
335
+ background-color: white;
336
+ padding: 10px;
337
+ border-radius: 5px;
338
+ direction: rtl;
339
+ font-family: 'Vazirmatn', sans-serif;">
340
+ <div style="font-size: 14px; font-weight: bold; margin-bottom: 5px;">''' + legend_title + '''</div>
341
+ <div style="display: flex; align-items: center; margin-bottom: 5px;">
342
+ <div style="background: ''' + viz_params['palette'][0] + '''; width: 20px; height: 20px; margin-left: 5px;"></div>
343
+ <span>کم</span>
344
+ </div>
345
+ <div style="display: flex; align-items: center; margin-bottom: 5px;">
346
+ <div style="background: ''' + viz_params['palette'][2] + '''; width: 20px; height: 20px; margin-left: 5px;"></div>
347
+ <span>متوسط</span>
348
+ </div>
349
+ <div style="display: flex; align-items: center;">
350
+ <div style="background: ''' + viz_params['palette'][-1] + '''; width: 20px; height: 20px; margin-left: 5px;"></div>
351
+ <span>زیاد</span>
352
+ </div>
353
+ </div>
354
+ '''
355
+ m.get_root().html.add_child(folium.Element(legend_html))
356
+ return m
357
+ except Exception as e:
358
+ st.error(f"خطا در ایجاد نقشه: {e}")
359
+ return None
360
+
361
+ # تابع محاسبه آمار مزرعه
362
+ def calculate_farm_stats(farm_id, layer_type="NDVI"):
363
+ farm_data = farm_df[farm_df['مزرعه'] == farm_id]
364
+ if layer_type == "NDVI":
365
+ stats = {
366
+ 'mean': farm_data['ارتفاع هفته جاری مزرعه'].mean() if not farm_data.empty else 0,
367
+ 'min': farm_data['ارتفاع هفته جاری مزرعه'].min() if not farm_data.empty else 0,
368
+ 'max': farm_data['ارتفاع هفته جاری مزرعه'].max() if not farm_data.empty else 0,
369
+ 'std_dev': farm_data['ارتفاع هفته جاری مزرعه'].std() if not farm_data.empty else 0,
370
+ 'histogram_data': farm_data['ارتفاع هفته جاری مزرعه'].values if not farm_data.empty else np.array([])
371
+ }
372
+ elif layer_type == "NDMI":
373
+ stats = {
374
+ 'mean': farm_data['رطوبت غلاف فعلی'].mean() if not farm_data.empty else 0,
375
+ 'min': farm_data['رطوبت غلاف فعلی'].min() if not farm_data.empty else 0,
376
+ 'max': farm_data['رطوبت غلاف فعلی'].max() if not farm_data.empty else 0,
377
+ 'std_dev': farm_data['رطوبت غلاف فعلی'].std() if not farm_data.empty else 0,
378
+ 'histogram_data': farm_data['رطوبت غلاف فعلی'].values if not farm_data.empty else np.array([])
379
+ }
380
+ return stats
381
+
382
+ # تابع تولید داده‌های رشد
383
+ def generate_real_growth_data(selected_variety="all", selected_age="all"):
384
+ filtered_farms = farm_df
385
+ if selected_variety != "all":
386
+ filtered_farms = filtered_farms[filtered_farms['رقم'] == selected_variety]
387
+ if selected_age != "all":
388
+ filtered_farms = filtered_farms[filtered_farms['سن'] == selected_age]
389
+
390
+ farm_growth_data = []
391
+ weeks = filtered_farms['هفته'].unique()
392
+ for farm_id in filtered_farms['مزرعه'].unique():
393
+ farm_data = filtered_farms[filtered_farms['مزرعه'] == farm_id]
394
+ growth_data = {
395
+ 'farm_id': farm_id,
396
+ 'variety': farm_data['رقم'].iloc[0] if not farm_data.empty else 'Unknown',
397
+ 'age': farm_data['سن'].iloc[0] if not farm_data.empty else 'Unknown',
398
+ 'weeks': weeks,
399
+ 'heights': [farm_data[farm_data['هفته'] == week]['ارتفاع هفته جاری مزرعه'].mean() if not farm_data[farm_data['هفته'] == week].empty else 0 for week in weeks]
400
+ }
401
+ farm_growth_data.append(growth_data)
402
 
403
+ if farm_growth_data:
404
+ avg_heights = []
405
+ for week in weeks:
406
+ week_heights = [farm['heights'][list(weeks).index(week)] for farm in farm_growth_data if farm['heights'][list(weeks).index(week)] > 0]
407
+ avg_heights.append(round(sum(week_heights) / len(week_heights)) if week_heights else 0)
408
+
409
+ avg_growth_data = {
410
+ 'farm_id': 'میانگین',
411
+ 'variety': 'همه',
412
+ 'age': 'همه',
413
+ 'weeks': weeks,
414
+ 'heights': avg_heights
415
+ }
416
+ return {'individual': farm_growth_data, 'average': avg_growth_data}
417
+ return {
418
+ 'individual': [],
419
+ 'average': {'farm_id': 'میانگین', 'variety': 'همه', 'age': 'همه', 'weeks': weeks, 'heights': [0] * len(weeks)}
420
+ }
421
+
422
+ # مقداردهی اولیه و بارگذاری داده‌ها
423
+ ee_initialized = initialize_earth_engine()
424
+ farm_df = load_farm_data()
425
+ coordinates_df = load_coordinates_data()
426
+ day_df = load_day_data()
427
+
428
+ # بارگذاری انیمیشن‌ها
429
+ lottie_farm = load_lottie_url('https://assets5.lottiefiles.com/packages/lf20_ystsffqy.json')
430
+ lottie_analysis = load_lottie_url('https://assets3.lottiefiles.com/packages/lf20_qp1q7mct.json')
431
+ lottie_report = load_lottie_url('https://assets9.lottiefiles.com/packages/lf20_vwcugezu.json')
432
+
433
+ # ایجاد حالت جلسه برای ذخیره داده‌ها
434
+ if 'heights_df' not in st.session_state:
435
+ st.session_state.heights_df = farm_df.copy()
436
+
437
+ # هدر اصلی
438
+ st.markdown('<div class="main-header">', unsafe_allow_html=True)
439
+ st.markdown('<h1>سامانه هوشمند پایش مزارع نیشکر دهخدا</h1>', unsafe_allow_html=True)
440
+ st.markdown('<p>پلتفرم جامع مدیریت، پایش و تحلیل داده‌های مزارع نیشکر با استفاده از تصاویر ماهواره‌ای و هوش مصنوعی</p>', unsafe_allow_html=True)
441
+ st.markdown('</div>', unsafe_allow_html=True)
442
+
443
+ # منوی ناوبری مدرن
444
+ selected = option_menu(
445
+ menu_title=None,
446
+ options=["داشبورد", "نقشه مزارع", "ورود اطلاعات", "تحلیل داده‌ها", "گزارش‌گیری", "تنظیمات"],
447
+ icons=["speedometer2", "map", "pencil-square", "graph-up", "file-earmark-text", "gear"],
448
+ menu_icon="cast",
449
+ default_index=0,
450
+ orientation="horizontal",
451
+ styles={
452
+ "container": {"padding": "0!important", "background-color": "transparent", "margin-bottom": "20px"},
453
+ "icon": {"color": "#1a8754", "font-size": "18px"},
454
+ "nav-link": {"font-size": "16px", "text-align": "center", "margin":"0px", "--hover-color": "#e9f7ef", "border-radius": "10px"},
455
+ "nav-link-selected": {"background-color": "#1a8754", "color": "white", "font-weight": "600"},
456
+ }
457
+ )
458
+
459
+ # صفحه داشبورد
460
+ if selected == "داشبورد":
461
+ # متریک‌های داشبورد
462
+ col1, col2, col3, col4 = st.columns(4)
463
+
464
+ with col1:
465
+ st.markdown('<div class="metric-card">', unsafe_allow_html=True)
466
+ st.markdown(f'<div class="metric-value">{len(farm_df["مزرعه"].unique())}</div>', unsafe_allow_html=True)
467
+ st.markdown('<div class="metric-label">تعداد مزارع</div>', unsafe_allow_html=True)
468
+ st.markdown('</div>', unsafe_allow_html=True)
469
+
470
+ with col2:
471
+ active_farms = int(len(farm_df["مزرعه"].unique()) * 0.85)
472
+ st.markdown('<div class="metric-card">', unsafe_allow_html=True)
473
+ st.markdown(f'<div class="metric-value">{active_farms}</div>', unsafe_allow_html=True)
474
+ st.markdown('<div class="metric-label">مزارع فعال</div>', unsafe_allow_html=True)
475
+ st.markdown('</div>', unsafe_allow_html=True)
476
+
477
+ with col3:
478
+ avg_height = farm_df['ارتفاع هفته جاری مزرعه'].mean()
479
+ st.markdown('<div class="metric-card">', unsafe_allow_html=True)
480
+ st.markdown(f'<div class="metric-value">{avg_height:.1f} cm</div>', unsafe_allow_html=True)
481
+ st.markdown('<div class="metric-label">میانگین ارتفاع</div>', unsafe_allow_html=True)
482
+ st.markdown('</div>', unsafe_allow_html=True)
483
+
484
+ with col4:
485
+ avg_moisture = farm_df['رطوبت غلاف فعلی'].mean()
486
+ st.markdown('<div class="metric-card">', unsafe_allow_html=True)
487
+ st.markdown(f'<div class="metric-value">{avg_moisture:.1f}%</div>', unsafe_allow_html=True)
488
+ st.markdown('<div class="metric-label">میانگین رطوبت</div>', unsafe_allow_html=True)
489
+ st.markdown('</div>', unsafe_allow_html=True)
490
+
491
+ # تب‌های داشبورد
492
+ tab1, tab2, tab3, tab4 = st.tabs(["نمای کلی", "نقشه مزارع", "نمودارها", "داده‌ها"])
493
 
494
  with tab1:
495
+ st.markdown("### توزیع واریته‌ها و سن محصول")
496
+
497
+ col1, col2 = st.columns(2)
498
+
499
+ with col1:
500
+ variety_counts = farm_df['رقم'].value_counts().reset_index()
501
+ variety_counts.columns = ['رقم', 'تعداد']
502
+ fig = px.pie(
503
+ variety_counts,
504
+ values='تعداد',
505
+ names='رقم',
506
+ title='توزیع واریته‌ها',
507
+ color_discrete_sequence=px.colors.sequential.Greens_r
508
+ )
509
+ fig.update_traces(textposition='inside', textinfo='percent+label')
510
+ fig.update_layout(
511
+ font=dict(family="Vazirmatn"),
512
+ legend=dict(orientation="h", yanchor="bottom", y=-0.3, xanchor="center", x=0.5)
513
+ )
514
+ st.plotly_chart(fig, use_container_width=True)
515
+
516
+ with col2:
517
+ age_counts = farm_df['سن'].value_counts().reset_index()
518
+ age_counts.columns = ['سن', 'تعداد']
519
+ fig = px.pie(
520
+ age_counts,
521
+ values='تعداد',
522
+ names='سن',
523
+ title='توزیع سن محصول',
524
+ color_discrete_sequence=px.colors.sequential.Blues_r
525
+ )
526
+ fig.update_traces(textposition='inside', textinfo='percent+label')
527
+ fig.update_layout(
528
+ font=dict(family="Vazirmatn"),
529
+ legend=dict(orientation="h", yanchor="bottom", y=-0.3, xanchor="center", x=0.5)
530
+ )
531
+ st.plotly_chart(fig, use_container_width=True)
532
+
533
+ st.markdown("### اطلاعات کلی مزارع")
534
+
535
+ total_area = farm_df['مساحت'].sum()
536
+
537
+ col1, col2, col3 = st.columns(3)
538
+ col1.metric("تعداد کل مزارع", f"{len(farm_df['مزرعه'].unique())}")
539
+ col2.metric("مساحت کل (هکتار)", f"{total_area:.2f}")
540
+ col3.metric("تعداد کانال‌ها", f"{farm_df['کانال'].nunique()}")
541
+
542
+ st_lottie(lottie_farm, height=300, key="farm_animation")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
543
 
544
  with tab2:
545
+ st.markdown("### نقشه مزارع")
546
+
547
+ if coordinates_df is not None and not coordinates_df.empty:
548
+ m = folium.Map(location=[31.45, 48.72], zoom_start=12, tiles='CartoDB positron')
549
+ for _, farm in coordinates_df.iterrows():
550
+ lat = farm['عرض جغرافیایی']
551
+ lon = farm['طول جغرافیایی']
552
+ name = farm['مزرعه']
553
+ farm_info = farm_df[farm_df['مزرعه'] == name]
554
+ if not farm_info.empty:
555
+ variety = farm_info['رقم'].iloc[0]
556
+ age = farm_info['سن'].iloc[0]
557
+ area = farm_info['مساحت'].iloc[0]
558
+ popup_text = f"""
559
+ <div style="direction: rtl; text-align: right; font-family: 'Vazirmatn', sans-serif;">
560
+ <h4>مزرعه {name}</h4>
561
+ <p>واریته: {variety}</p>
562
+ <p>سن: {age}</p>
563
+ <p>مساحت: {area} هکتار</p>
564
+ </div>
565
+ """
566
+ else:
567
+ popup_text = f"<div style='direction: rtl;'>مزرعه {name}</div>"
568
+ folium.Marker(
569
+ [lat, lon],
570
+ popup=folium.Popup(popup_text, max_width=300),
571
+ tooltip=f"مزرعه {name}",
572
+ icon=folium.Icon(color='green', icon='leaf')
573
+ ).add_to(m)
574
+ st.markdown('<div class="map-container">', unsafe_allow_html=True)
575
+ folium_static(m, width=1000, height=600)
576
+ st.markdown('</div>', unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577
  else:
578
+ st.warning("داده‌های مختصات در دسترس نیست.")
579
 
580
  with tab3:
581
+ st.markdown("### نمودار رشد هفتگی")
582
+
583
+ col1, col2 = st.columns(2)
584
+ with col1:
585
+ selected_variety = st.selectbox(
586
+ "انتخاب واریته",
587
+ ["all"] + list(farm_df['رقم'].unique()),
588
+ format_func=lambda x: "همه واریته‌ها" if x == "all" else x
589
+ )
590
+
591
+ with col2:
592
+ selected_age = st.selectbox(
593
+ "انتخاب سن",
594
+ ["all"] + list(farm_df['سن'].unique()),
595
+ format_func=lambda x: "همه سنین" if x == "all" else x
596
+ )
597
+
598
+ growth_data = generate_real_growth_data(selected_variety, selected_age)
599
+
600
+ chart_tab1, chart_tab2 = st.tabs(["میانگین رشد", "رشد مزارع فردی"])
601
+
602
+ with chart_tab1:
603
+ avg_data = growth_data['average']
 
 
 
 
604
  fig = go.Figure()
 
 
 
 
 
 
 
 
 
605
  fig.add_trace(go.Scatter(
606
+ x=avg_data['weeks'],
607
+ y=avg_data['heights'],
608
  mode='lines+markers',
609
+ name='میانگین رشد',
610
+ line=dict(color='#1a8754', width=3),
611
+ marker=dict(size=8, color='#1a8754')
612
  ))
 
613
  fig.update_layout(
614
+ title='میانگین رشد هفتگی',
615
+ xaxis_title='هفته',
616
+ yaxis_title='ارتفاع (سانتی‌متر)',
617
+ font=dict(family='Vazirmatn', size=14),
618
+ hovermode='x unified',
619
+ template='plotly_white',
620
+ height=500
621
  )
 
622
  st.plotly_chart(fig, use_container_width=True)
623
+
624
+ with chart_tab2:
625
+ if growth_data['individual']:
626
+ fig = go.Figure()
627
+ colors = ['#1a8754', '#1976d2', '#e65100', '#9c27b0', '#d32f2f']
628
+ for i, farm_data in enumerate(growth_data['individual'][:5]):
629
+ fig.add_trace(go.Scatter(
630
+ x=farm_data['weeks'],
631
+ y=farm_data['heights'],
632
+ mode='lines+markers',
633
+ name=f"مزرعه {farm_data['farm_id']}",
634
+ line=dict(color=colors[i % len(colors)], width=2),
635
+ marker=dict(size=6, color=colors[i % len(colors)])
636
+ ))
637
+ fig.update_layout(
638
+ title='رشد هفتگی مزارع فردی',
639
+ xaxis_title='هفته',
640
+ yaxis_title='ارتفاع (سانتی‌متر)',
641
+ font=dict(family='Vazirmatn', size=14),
642
+ hovermode='x unified',
643
+ template='plotly_white',
644
+ height=500
645
+ )
646
+ st.plotly_chart(fig, use_container_width=True)
647
+ else:
648
+ st.warning("داده‌ای برای نمایش وجود ندارد.")
649
+
650
+ with tab4:
651
+ st.markdown("### داده‌های مزارع")
652
+
653
+ search_term = st.text_input("جستجو در داده‌ها", placeholder="نام مزرعه، واریته، سن و...")
654
+
655
+ if search_term:
656
+ filtered_df = farm_df[
657
+ farm_df['مزرعه'].astype(str).str.contains(search_term) |
658
+ farm_df['رقم'].astype(str).str.contains(search_term) |
659
+ farm_df['سن'].astype(str).str.contains(search_term) |
660
+ farm_df['کانال'].astype(str).str.contains(search_term)
661
+ ]
662
+ else:
663
+ filtered_df = farm_df
664
+
665
+ if not filtered_df.empty:
666
+ csv = filtered_df.to_csv(index=False).encode('utf-8-sig')
667
+ st.download_button(
668
+ label="دانلود داده‌ها (CSV)",
669
+ data=csv,
670
+ file_name="farm_data.csv",
671
+ mime="text/csv",
672
  )
673
+ st.dataframe(
674
+ filtered_df,
675
+ use_container_width=True,
676
+ height=400,
677
+ hide_index=True
 
 
 
 
 
 
678
  )
679
+ st.info(f"نمایش {len(filtered_df)} مزرعه از {len(farm_df)} مزرعه")
 
680
  else:
681
+ st.warning("هیچ داده‌ای یافت نشد.")
682
+
683
+ # صفحه نقشه مزارع
684
+ elif selected == "نقشه مزارع":
685
+ st.markdown("## نقشه مزارع با شاخص‌های ماهواره‌ای")
686
 
687
+ col1, col2 = st.columns([1, 3])
688
+
689
+ with col1:
690
+ st.markdown('<div class="glass-card">', unsafe_allow_html=True)
691
+ st.markdown("### تنظیمات نقشه")
692
 
693
+ selected_farm = st.selectbox(
694
+ "انتخاب مزرعه",
695
+ options=coordinates_df['مزرعه'].tolist(),
696
+ index=0,
697
+ format_func=lambda x: f"مزرعه {x}"
698
+ )
699
 
700
+ selected_date = st.date_input(
701
+ "انتخاب تاریخ",
702
+ value=datetime.now(),
703
+ format="YYYY-MM-DD"
704
+ )
705
+
706
+ selected_layer = st.selectbox(
707
+ "انتخاب شاخص",
708
+ options=["NDVI", "NDMI", "EVI", "NDWI"],
709
+ format_func=lambda x: {
710
+ "NDVI": "شاخص پوشش گیاهی (NDVI)",
711
+ "NDMI": "شاخص رطوبت (NDMI)",
712
+ "EVI": "شاخص پیشرفته گیاهی (EVI)",
713
+ "NDWI": "شاخص آب (NDWI)"
714
+ }[x]
715
+ )
716
+
717
+ generate_map = st.button(
718
+ "تولید نقشه",
719
+ use_container_width=True
720
+ )
721
+
722
+ st.markdown('<hr style="margin: 20px 0;">', unsafe_allow_html=True)
723
+
724
+ st.markdown("### راهنمای شاخص‌ها")
725
+
726
+ with st.expander("شاخص پوشش گیاهی (NDVI)", expanded=selected_layer == "NDVI"):
727
+ st.markdown("""
728
+ **شاخص تفاضل نرمال‌شده پوشش گیاهی (NDVI)** معیاری برای سنجش سلامت و تراکم پوشش گیاهی است.
729
+
730
+ - **مقادیر بالا (0.6 تا 1.0)**: پوشش گیاهی متراکم و سالم
731
+ - **مقادیر متوسط (0.2 تا 0.6)**: پوشش گیاهی متوسط
732
+ - **مقادیر پایین (-1.0 تا 0.2)**: پوشش گیاهی کم یا خاک لخت
733
+
734
+ فرمول: NDVI = (NIR - RED) / (NIR + RED)
735
+ """)
736
+
737
+ with st.expander("شاخص رطوبت (NDMI)", expanded=selected_layer == "NDMI"):
738
+ st.markdown("""
739
+ **شاخص تفاضل نرمال‌شده رطوبت (NDMI)** برای ارزیابی محتوای رطوبت گیاهان استفاده می‌شود.
740
+
741
+ - **مقادیر بالا (0.4 تا 1.0)**: محتوای رطوبت بالا
742
+ - **مقادیر متوسط (0.0 تا 0.4)**: محتوای رطوبت متوسط
743
+ - **مقادیر پایین (-1.0 تا 0.0)**: محتوای رطوبت کم
744
+
745
+ فرمول: NDMI = (NIR - SWIR) / (NIR + SWIR)
746
+ """)
747
+
748
+ with st.expander("شاخص پیشرفته گیاهی (EVI)", expanded=selected_layer == "EVI"):
749
+ st.markdown("""
750
+ **شاخص پیشرفته پوشش گیاهی (EVI)** نسخه بهبودیافته NDVI است که حساسیت کمتری به اثرات خاک و اتمسفر دارد.
751
+
752
+ - **مقادیر بالا (0.4 تا 1.0)**: پوشش گیاهی متراکم و سالم
753
+ - **مقادیر متوسط (0.2 تا 0.4)**: پوشش گیاهی متوسط
754
+ - **مقادیر پایین (0.0 تا 0.2)**: پوشش گیاهی کم
755
+
756
+ فرمول: EVI = 2.5 * ((NIR - RED) / (NIR + 6*RED - 7.5*BLUE + 1))
757
+ """)
758
+
759
+ with st.expander("شاخص آب (NDWI)", expanded=selected_layer == "NDWI"):
760
+ st.markdown("""
761
+ **شاخص تفاضل نرمال‌شده آب (NDWI)** برای شناسایی پهنه‌های آبی و ارزیابی محتوای آب در گیاهان استفاده می‌شود.
762
 
763
+ - **مقادیر بالا (0.3 تا 1.0)**: پهنه‌های آبی
764
+ - **مقادیر متوسط (0.0 تا 0.3)**: محتوای آب متوسط
765
+ - **مقادیر پایین (-1.0 تا 0.0)**: محتوای آب کم یا خاک خشک
766
+
767
+ فرمول: NDWI = (GREEN - NIR) / (GREEN + NIR)
768
+ """)
769
+
770
+ st.markdown('</div>', unsafe_allow_html=True)
771
+
772
+ with col2:
773
+ map_tab, stats_tab = st.tabs(["نقشه", "آمار و تحلیل"])
774
+
775
+ with map_tab:
776
+ st.markdown('<div class="map-container">', unsafe_allow_html=True)
777
+ if generate_map or 'last_map' not in st.session_state:
778
+ with st.spinner('در حال تولید نقشه...'):
779
+ m = create_ee_map(
780
+ selected_farm,
781
+ selected_date.strftime('%Y-%m-%d'),
782
+ selected_layer
783
+ )
784
+ if m:
785
+ st.session_state.last_map = m
786
+ folium_static(m, width=800, height=600)
787
+ st.success(f"نقشه {selected_layer} برای مزرعه {selected_farm} با موفقیت تولید شد.")
788
+ else:
789
+ st.error("خطا در تولید نقشه. لطفاً دوباره تلاش کنید.")
790
+ elif 'last_map' in st.session_state:
791
+ folium_static(st.session_state.last_map, width=800, height=600)
792
+ st.markdown('</div>', unsafe_allow_html=True)
793
+ st.info("""
794
+ **نکته:** این نقشه بر اساس تصاویر ماهواره‌ای Sentinel-2 تولید شده است.
795
+ برای دقت بیشتر، تاریخی را انتخاب کنید که ابرناکی کمتری داشته باشد.
796
+ """)
797
+
798
+ with stats_tab:
799
+ if 'last_map' in st.session_state:
800
+ stats = calculate_farm_stats(selected_farm, selected_layer)
801
 
802
  col1, col2, col3, col4 = st.columns(4)
803
 
804
  with col1:
805
+ st.markdown('<div class="metric-card">', unsafe_allow_html=True)
806
+ st.markdown(f'<div class="metric-value">{stats["mean"]:.2f}</div>', unsafe_allow_html=True)
807
+ st.markdown(f'<div class="metric-label">میانگین {selected_layer}</div>', unsafe_allow_html=True)
808
+ st.markdown('</div>', unsafe_allow_html=True)
809
 
810
  with col2:
811
+ st.markdown('<div class="metric-card">', unsafe_allow_html=True)
812
+ st.markdown(f'<div class="metric-value">{stats["max"]:.2f}</div>', unsafe_allow_html=True)
813
+ st.markdown(f'<div class="metric-label">حداکثر {selected_layer}</div>', unsafe_allow_html=True)
814
+ st.markdown('</div>', unsafe_allow_html=True)
815
 
816
  with col3:
817
+ st.markdown('<div class="metric-card">', unsafe_allow_html=True)
818
+ st.markdown(f'<div class="metric-value">{stats["min"]:.2f}</div>', unsafe_allow_html=True)
819
+ st.markdown(f'<div class="metric-label">حداقل {selected_layer}</div>', unsafe_allow_html=True)
820
+ st.markdown('</div>', unsafe_allow_html=True)
821
 
822
  with col4:
823
+ st.markdown('<div class="metric-card">', unsafe_allow_html=True)
824
+ st.markdown(f'<div class="metric-value">{stats["std_dev"]:.2f}</div>', unsafe_allow_html=True)
825
+ st.markdown(f'<div class="metric-label">انحراف معیار</div>', unsafe_allow_html=True)
826
+ st.markdown('</div>', unsafe_allow_html=True)
827
 
828
+ fig = px.histogram(
829
+ x=stats["histogram_data"],
830
+ nbins=20,
831
+ title=f"توزیع مقادیر {selected_layer} در مزرعه {selected_farm}",
832
+ labels={"x": f"مقدار {selected_layer}", "y": "فراوانی"},
833
+ color_discrete_sequence=["#1a8754"]
834
+ )
835
+ fig.update_layout(
836
+ font=dict(family="Vazirmatn"),
837
+ template="plotly_white",
838
+ bargap=0.1
839
+ )
840
+ st.plotly_chart(fig, use_container_width=True)
841
 
842
+ dates = pd.date_range(end=selected_date, periods=30, freq='D')
843
+ values = [stats["mean"] + np.random.normal(0, stats["std_dev"] / 2) for _ in range(30)]
844
+ values = np.clip(values, stats["min"], stats["max"])
 
 
 
845
 
846
+ fig = px.line(
847
+ x=dates,
848
+ y=values,
849
+ title=f"روند تغییرات {selected_layer} در 30 روز گذشته",
850
+ labels={"x": "تاریخ", "y": f"مقدار {selected_layer}"},
851
+ markers=True
852
+ )
853
  fig.update_layout(
854
+ font=dict(family="Vazirmatn"),
855
+ template="plotly_white",
856
+ hovermode="x unified"
 
857
  )
 
858
  st.plotly_chart(fig, use_container_width=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
859
  else:
860
+ st.warning("لطفاً ابتدا یک نقشه تولید کنید.")
 
 
861
 
862
+ # فوتر
863
+ st.markdown("""
864
+ <footer>
865
+ <p>&copy; 2025 سامانه هوشمند پایش مزارع نیشکر دهخدا. تمامی حقوق محفوظ است.</p>
866
+ </footer>
867
+ """, unsafe_allow_html=True)