Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,780 +1,867 @@
|
|
1 |
import streamlit as st
|
2 |
-
import ee
|
3 |
-
import folium
|
4 |
import pandas as pd
|
5 |
import numpy as np
|
6 |
-
import
|
7 |
-
import requests
|
8 |
-
import json
|
9 |
-
import os
|
10 |
from streamlit_folium import folium_static
|
11 |
-
import
|
|
|
|
|
|
|
|
|
12 |
import plotly.express as px
|
13 |
import plotly.graph_objects as go
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
st.set_page_config(
|
18 |
-
page_title="
|
19 |
page_icon="🌿",
|
20 |
layout="wide",
|
21 |
initial_sidebar_state="expanded"
|
22 |
)
|
23 |
|
24 |
-
#
|
25 |
-
st.
|
26 |
-
|
27 |
-
|
28 |
-
# Load service account credentials for Earth Engine
|
29 |
-
@st.cache_resource
|
30 |
-
def initialize_ee():
|
31 |
-
service_account = 'dehkhodamap-e9f0da4ce9f6514021@ee-esmaeilkiani13877.iam.gserviceaccount.com'
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
f.write(json.dumps({
|
37 |
-
"type": "service_account",
|
38 |
-
"project_id": "ee-esmaeilkiani13877",
|
39 |
-
"private_key_id": "cfdea6eaf4115cb6462626743e4b15df85fd0c7f",
|
40 |
-
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQCjeOvgKi+gWK6k\n2/0RXOA3LAo51DVxA1ja9v0qFOn4FNOStxkwlKvcK8yDQNb53FPORHFIUHvev3y7\niHr/UEUqnn5Rzjbf0k3qWB/fS377/UP4VznMsFpKiHNxCBtaNS8KLk6Rat6Y7Xfm\nJfpSU7ZjYZmVc81M/7iFofGUSJoHYpxhyt3rjp53huxJNNW5e12TFnLkyg1Ja/9X\nGMTt+vjVcO4XhQCIlaGVdSKS2sHlHgzpzE6KtuUKjDMEBqPkWF4xc16YavYltwPd\nqULCu2/t6dczhYL4NEFj8wL+KJqOojfsyoWmzqPFx1Bbxk4BVPk/lslq9+m9p5kq\nSCG0/9W9AgMBAAECggEAEGchw+x3uu8rFv+79PIMzXxtyj+w3RYo5E/EN2TB1VLB\nqAcXT/ibBgyfCMyIxamF/zx+4XKx+zfbnDWlodi8F/qvUiYO+4ZuqwUMras1orNX\nDqQx+If5h2EJtF3L4NFVVwAuggjnLREm5sEIzRn5Qx+X+ZcVEpTWPxJw2yAt1G+3\nk311KqD+zR7jQfchXU4xQQ1ZoHkdAJ/DPGun6x+HUOq7Gus73A6IzLp12ZoiHN3n\nkY+lG8cMs039QAe/OhZFEo5I9cNSaI688HmsLRivZ26WoPEnwcN0MHQGtXqGmMUI\nCcpgJqllqdWMuBlYcpSadn7rZzPujSlzIxkvieLeAQKBgQDNTYUWZdGbA2sHcBpJ\nrqKwDYF/AwZtjx+hXHVBRbR6DJ1bO2P9n51ioTMP/H9K61OBAMZ7w71xJ2I+9Snv\ncYumPWoiUwiOhTh3O7nYz6mR7sK0HuUCZfYdaxJVnLgNCgj+w9AxYnkzOyL9/QvJ\nknrlMKf4H59NbapBqy5spilq1QKBgQDL1wkGHhoTuLb5Xp3X3CX4S7WMke4T01bO\nPpMmlewVgH5lK5wTcZjB8QRO2QFQtUZTP/Ghv6ZH4h/3P9/ZIF3hV5CSsUkr/eFf\nMY+fQL1K/puwfZbSDcH1GtDToOyoLFIvPXBJo0Llg/oF2TK1zGW3cPszeDf/Tm6x\nUwUMw2BjSQKBgEJzAMyLEBi4NoAlzJxkpcuN04gkloQHexljL6B8yzlls9i/lFGW\nw/4UZs6ZzymUmWZ7tcKBTGO/d5EhEP2rJqQb5KpPbcmTXP9amYCPVjchrGtYRI9O\nKSbEbR7ApuGxic/L2Sri0I/AaEcFDDel7ZkY8oTg11LcV+sBWPlZnrYxAoGBALXj\n/DlpQvu2KA/9TfwAhiE57Zax4S/vtdX0IHqd7TyCnEbK00rGYvksiBuTqIjMOSSw\nOn2K9mXOcZe/d4/YQe2CpY9Ag3qt4R2ArBf/POpep66lYp+thxWgCBfP0V1/rxZY\nTIppFJiZW9E8LvPqoBlAx+b1r4IyCrRQ0IDDFo+BAoGBAMCff4XKXHlV2SDOL5uh\nV/f9ApEdF4leuo+hoMryKuSQ9Y/H0A/Lzw6KP5FLvVtqc0Kw2D1oLy8O72a1xwfY\n8dpZMNzKAWWS7viN0oC+Ebj2Foc2Mn/J6jdhtP/YRLTqvoTWCa2rVcn4R1BurMIf\nLa4DJE9BagGdVNTDtynBhKhZ\n-----END PRIVATE KEY-----\n",
|
41 |
-
"client_email": "dehkhodamap-e9f0da4ce9f6514021@ee-esmaeilkiani13877.iam.gserviceaccount.com",
|
42 |
-
"client_id": "113062529451626176784",
|
43 |
-
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
44 |
-
"token_uri": "https://oauth2.googleapis.com/token",
|
45 |
-
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
46 |
-
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dehkhodamap-e9f0da4ce9f6514021%40ee-esmaeilkiani13877.iam.gserviceaccount.com",
|
47 |
-
"universe_domain": "googleapis.com"
|
48 |
-
}))
|
49 |
-
)
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
def load_farm_data():
|
63 |
-
farm_coords_url = "https://hebbkx1anhila5yf.public.blob.vercel-storage.com/farm_coordinates-TTksVyH860XeyfKUCGMMkq9pYMChZj.csv"
|
64 |
-
farm_db_url = "https://hebbkx1anhila5yf.public.blob.vercel-storage.com/%D9%BE%D8%A7%DB%8C%DA%AF%D8%A7%D9%87%20%D8%AF%D8%A7%D8%AF%D9%87%20%281%29-5Aq8TzJrbK3y5AtUVjrU0bwZD1SUHL.csv"
|
65 |
|
66 |
-
|
67 |
-
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
# Define point of interest
|
78 |
-
poi = ee.Geometry.Point([lon, lat])
|
79 |
-
|
80 |
-
# Define region around the point
|
81 |
-
region = poi.buffer(500) # 500m buffer around the point
|
82 |
-
|
83 |
-
# Load Sentinel-2 collection
|
84 |
-
s2 = ee.ImageCollection('COPERNICUS/S2_SR') \
|
85 |
-
.filterBounds(region) \
|
86 |
-
.filterDate(date_range[0], date_range[1]) \
|
87 |
-
.sort('CLOUDY_PIXEL_PERCENTAGE') \
|
88 |
-
.first()
|
89 |
-
|
90 |
-
if s2 is None:
|
91 |
-
return None, None, None, None
|
92 |
-
|
93 |
-
# Calculate indices
|
94 |
-
ndvi = s2.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
95 |
-
ndwi = s2.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
96 |
-
|
97 |
-
# LAI calculation (Leaf Area Index)
|
98 |
-
# Using simplified model: LAI = 3.618 * NDVI - 0.118
|
99 |
-
lai = ndvi.multiply(3.618).subtract(0.118).rename('LAI')
|
100 |
-
|
101 |
-
# Chlorophyll content (CHL)
|
102 |
-
# Using ratio of bands B8/B5
|
103 |
-
chl = s2.select('B8').divide(s2.select('B5')).rename('CHL')
|
104 |
-
|
105 |
-
# Create visualization parameters
|
106 |
-
ndvi_vis = {
|
107 |
-
'min': 0,
|
108 |
-
'max': 1,
|
109 |
-
'palette': ['red', 'yellow', 'green']
|
110 |
}
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
|
|
|
|
116 |
}
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
'max': 5,
|
121 |
-
'palette': ['white', 'lightgreen', 'darkgreen']
|
122 |
}
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
}
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
# Get NDWI map tile URL
|
135 |
-
ndwi_mapid = ndwi.getMapId(ndwi_vis)
|
136 |
-
ndwi_url = ndwi_mapid['tile_fetcher'].url_format
|
137 |
-
|
138 |
-
# Get LAI map tile URL
|
139 |
-
lai_mapid = lai.getMapId(lai_vis)
|
140 |
-
lai_url = lai_mapid['tile_fetcher'].url_format
|
141 |
-
|
142 |
-
# Get CHL map tile URL
|
143 |
-
chl_mapid = chl.getMapId(chl_vis)
|
144 |
-
chl_url = chl_mapid['tile_fetcher'].url_format
|
145 |
-
|
146 |
-
# Get values at point
|
147 |
-
ndvi_val = ndvi.reduceRegion(
|
148 |
-
reducer=ee.Reducer.mean(),
|
149 |
-
geometry=poi,
|
150 |
-
scale=10
|
151 |
-
).getInfo()['NDVI']
|
152 |
-
|
153 |
-
ndwi_val = ndwi.reduceRegion(
|
154 |
-
reducer=ee.Reducer.mean(),
|
155 |
-
geometry=poi,
|
156 |
-
scale=10
|
157 |
-
).getInfo()['NDWI']
|
158 |
-
|
159 |
-
lai_val = lai.reduceRegion(
|
160 |
-
reducer=ee.Reducer.mean(),
|
161 |
-
geometry=poi,
|
162 |
-
scale=10
|
163 |
-
).getInfo()['LAI']
|
164 |
-
|
165 |
-
chl_val = chl.reduceRegion(
|
166 |
-
reducer=ee.Reducer.mean(),
|
167 |
-
geometry=poi,
|
168 |
-
scale=10
|
169 |
-
).getInfo()['CHL']
|
170 |
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
'ndvi': ndvi_val,
|
180 |
-
'ndwi': ndwi_val,
|
181 |
-
'lai': lai_val,
|
182 |
-
'chl': chl_val
|
183 |
-
}
|
184 |
}
|
185 |
-
|
186 |
-
# Get time series data for indices
|
187 |
-
@st.cache_data(ttl=3600)
|
188 |
-
def get_time_series(lat, lon, start_date, end_date):
|
189 |
-
# Define point of interest
|
190 |
-
poi = ee.Geometry.Point([lon, lat])
|
191 |
-
|
192 |
-
# Define region around the point
|
193 |
-
region = poi.buffer(500) # 500m buffer around the point
|
194 |
-
|
195 |
-
# Load Sentinel-2 collection for the time period
|
196 |
-
s2_collection = ee.ImageCollection('COPERNICUS/S2_SR') \
|
197 |
-
.filterBounds(region) \
|
198 |
-
.filterDate(start_date, end_date) \
|
199 |
-
.filter(ee.Filter.lt('CLOUDY_PIXEL_PERCENTAGE', 20))
|
200 |
-
|
201 |
-
# Create a function to calculate indices for each image
|
202 |
-
def add_indices(image):
|
203 |
-
ndvi = image.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
204 |
-
ndwi = image.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
205 |
-
lai = ndvi.multiply(3.618).subtract(0.118).rename('LAI')
|
206 |
-
chl = image.select('B8').divide(image.select('B5')).rename('CHL')
|
207 |
-
|
208 |
-
# Get the timestamp
|
209 |
-
date = ee.Date(image.get('system:time_start'))
|
210 |
-
|
211 |
-
# Get values at the point
|
212 |
-
ndvi_val = ndvi.reduceRegion(
|
213 |
-
reducer=ee.Reducer.mean(),
|
214 |
-
geometry=poi,
|
215 |
-
scale=10
|
216 |
-
).get('NDVI')
|
217 |
-
|
218 |
-
ndwi_val = ndwi.reduceRegion(
|
219 |
-
reducer=ee.Reducer.mean(),
|
220 |
-
geometry=poi,
|
221 |
-
scale=10
|
222 |
-
).get('NDWI')
|
223 |
-
|
224 |
-
lai_val = lai.reduceRegion(
|
225 |
-
reducer=ee.Reducer.mean(),
|
226 |
-
geometry=poi,
|
227 |
-
scale=10
|
228 |
-
).get('LAI')
|
229 |
-
|
230 |
-
chl_val = chl.reduceRegion(
|
231 |
-
reducer=ee.Reducer.mean(),
|
232 |
-
geometry=poi,
|
233 |
-
scale=10
|
234 |
-
).get('CHL')
|
235 |
-
|
236 |
-
# Return a feature with these properties
|
237 |
-
return ee.Feature(None, {
|
238 |
-
'date': date.format('YYYY-MM-dd'),
|
239 |
-
'ndvi': ndvi_val,
|
240 |
-
'ndwi': ndwi_val,
|
241 |
-
'lai': lai_val,
|
242 |
-
'chl': chl_val
|
243 |
-
})
|
244 |
-
|
245 |
-
# Map the function over the collection
|
246 |
-
indices_fc = s2_collection.map(add_indices)
|
247 |
-
|
248 |
-
# Get the data as a list of dictionaries
|
249 |
-
indices_data = indices_fc.getInfo()['features']
|
250 |
-
|
251 |
-
# Convert to pandas DataFrame
|
252 |
-
if indices_data:
|
253 |
-
data_list = [{'date': feature['properties']['date'],
|
254 |
-
'ndvi': feature['properties']['ndvi'],
|
255 |
-
'ndwi': feature['properties']['ndwi'],
|
256 |
-
'lai': feature['properties']['lai'],
|
257 |
-
'chl': feature['properties']['chl']}
|
258 |
-
for feature in indices_data]
|
259 |
-
|
260 |
-
df = pd.DataFrame(data_list)
|
261 |
-
df['date'] = pd.to_datetime(df['date'])
|
262 |
-
return df.sort_values('date')
|
263 |
-
else:
|
264 |
-
return pd.DataFrame(columns=['date', 'ndvi', 'ndwi', 'lai', 'chl'])
|
265 |
-
|
266 |
-
# Get weather data from OpenWeather API
|
267 |
-
@st.cache_data(ttl=3600)
|
268 |
-
def get_weather_data(lat, lon):
|
269 |
-
api_key = "ed47316a45379e2221a75f813229fb46"
|
270 |
-
url = f"https://api.openweathermap.org/data/2.5/onecall?lat={lat}&lon={lon}&exclude=minutely,hourly,alerts&appid={api_key}&units=metric"
|
271 |
|
272 |
-
|
|
|
|
|
|
|
273 |
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
#
|
278 |
-
|
279 |
-
|
280 |
-
'temp': current.get('temp'),
|
281 |
-
'humidity': current.get('humidity'),
|
282 |
-
'wind_speed': current.get('wind_speed'),
|
283 |
-
'description': current.get('weather', [{}])[0].get('description', '')
|
284 |
-
}
|
285 |
-
|
286 |
-
# Daily forecast for the next 7 days
|
287 |
-
daily = data.get('daily', [])
|
288 |
-
daily_forecast = []
|
289 |
-
|
290 |
-
for day in daily:
|
291 |
-
date = datetime.fromtimestamp(day.get('dt')).strftime('%Y-%m-%d')
|
292 |
-
daily_forecast.append({
|
293 |
-
'date': date,
|
294 |
-
'temp_min': day.get('temp', {}).get('min'),
|
295 |
-
'temp_max': day.get('temp', {}).get('max'),
|
296 |
-
'humidity': day.get('humidity'),
|
297 |
-
'wind_speed': day.get('wind_speed')
|
298 |
-
})
|
299 |
-
|
300 |
-
return {
|
301 |
-
'current': current_weather,
|
302 |
-
'forecast': daily_forecast
|
303 |
-
}
|
304 |
-
else:
|
305 |
-
st.error(f"Failed to fetch weather data: {response.status_code}")
|
306 |
-
return None
|
307 |
-
|
308 |
-
# Display folium map with satellite data
|
309 |
-
def display_satellite_map(lat, lon, tile_url, layer_name):
|
310 |
-
# Create map centered on the farm
|
311 |
-
m = folium.Map(location=[lat, lon], zoom_start=15)
|
312 |
-
|
313 |
-
# Add base tiles
|
314 |
-
folium.TileLayer('OpenStreetMap').add_to(m)
|
315 |
-
folium.TileLayer('Stamen Terrain').add_to(m)
|
316 |
-
|
317 |
-
# Add satellite data tile layer
|
318 |
-
folium.TileLayer(
|
319 |
-
tiles=tile_url,
|
320 |
-
attr='Google Earth Engine',
|
321 |
-
name=layer_name,
|
322 |
-
overlay=True,
|
323 |
-
opacity=0.7
|
324 |
-
).add_to(m)
|
325 |
-
|
326 |
-
# Add marker for the farm
|
327 |
-
folium.Marker(
|
328 |
-
[lat, lon],
|
329 |
-
popup=f"Farm Location\nLat: {lat}\nLon: {lon}"
|
330 |
-
).add_to(m)
|
331 |
-
|
332 |
-
# Add layer control
|
333 |
-
folium.LayerControl().add_to(m)
|
334 |
-
|
335 |
-
return m
|
336 |
-
|
337 |
-
# Initialize Earth Engine
|
338 |
-
ee_initialized = initialize_ee()
|
339 |
-
|
340 |
-
if ee_initialized:
|
341 |
-
# Load farm data
|
342 |
-
farm_coords, farm_db = load_farm_data()
|
343 |
|
344 |
-
|
345 |
-
|
|
|
|
|
346 |
|
347 |
-
|
348 |
-
|
349 |
-
|
|
|
|
|
|
|
350 |
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
farm_age = farm_row['age']
|
356 |
-
farm_variety = farm_row['variety']
|
357 |
|
358 |
-
|
359 |
-
|
|
|
|
|
|
|
360 |
|
361 |
-
|
362 |
-
|
|
|
|
|
363 |
|
364 |
-
|
365 |
-
|
366 |
-
|
|
|
|
|
367 |
|
368 |
-
|
369 |
-
|
|
|
|
|
|
|
370 |
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
with col2:
|
392 |
-
st.metric("Age", farm_age)
|
393 |
-
|
394 |
-
with col3:
|
395 |
-
st.metric("Variety", farm_variety)
|
396 |
-
|
397 |
-
with col4:
|
398 |
-
st.metric("Area", f"{day_info.iloc[0]['مساحت زیرمجموعه']} ha")
|
399 |
-
|
400 |
-
# Fetch satellite data
|
401 |
-
with st.spinner("Fetching satellite data..."):
|
402 |
-
indices_data = get_satellite_indices(
|
403 |
-
farm_lat,
|
404 |
-
farm_lon,
|
405 |
-
[start_date_str, end_date_str]
|
406 |
-
)
|
407 |
-
|
408 |
-
# Get time series data for the period
|
409 |
-
time_series = get_time_series(
|
410 |
-
farm_lat,
|
411 |
-
farm_lon,
|
412 |
-
start_date_str,
|
413 |
-
end_date_str
|
414 |
-
)
|
415 |
|
416 |
-
|
417 |
-
|
418 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
419 |
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
427 |
|
428 |
with tab1:
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
)
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
with map_tabs[2]:
|
478 |
-
lai_map = display_satellite_map(
|
479 |
-
farm_lat,
|
480 |
-
farm_lon,
|
481 |
-
indices_data['urls']['lai'],
|
482 |
-
"LAI"
|
483 |
-
)
|
484 |
-
st.write("LAI (Leaf Area Index) - Higher values (darker green) indicate more leaf area")
|
485 |
-
folium_static(lai_map, width=800, height=500)
|
486 |
-
|
487 |
-
with map_tabs[3]:
|
488 |
-
chl_map = display_satellite_map(
|
489 |
-
farm_lat,
|
490 |
-
farm_lon,
|
491 |
-
indices_data['urls']['chl'],
|
492 |
-
"CHL"
|
493 |
-
)
|
494 |
-
st.write("CHL (Chlorophyll Content) - Higher values (green) indicate more chlorophyll")
|
495 |
-
folium_static(chl_map, width=800, height=500)
|
496 |
-
else:
|
497 |
-
st.warning("No satellite data available for the selected date range. Try extending the date range.")
|
498 |
|
499 |
with tab2:
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
y='lai',
|
533 |
-
title=f"LAI Time Series for {selected_farm}",
|
534 |
-
labels={"date": "Date", "lai": "LAI Value"},
|
535 |
-
markers=True
|
536 |
-
)
|
537 |
-
st.plotly_chart(fig, use_container_width=True)
|
538 |
-
|
539 |
-
with ts_tabs[3]:
|
540 |
-
fig = px.line(
|
541 |
-
time_series,
|
542 |
-
x='date',
|
543 |
-
y='chl',
|
544 |
-
title=f"CHL Time Series for {selected_farm}",
|
545 |
-
labels={"date": "Date", "chl": "CHL Value"},
|
546 |
-
markers=True
|
547 |
-
)
|
548 |
-
st.plotly_chart(fig, use_container_width=True)
|
549 |
-
|
550 |
-
with ts_tabs[4]:
|
551 |
-
# Comparison of all indices
|
552 |
-
fig = go.Figure()
|
553 |
-
|
554 |
-
fig.add_trace(go.Scatter(
|
555 |
-
x=time_series['date'],
|
556 |
-
y=time_series['ndvi'],
|
557 |
-
mode='lines+markers',
|
558 |
-
name='NDVI'
|
559 |
-
))
|
560 |
-
|
561 |
-
fig.add_trace(go.Scatter(
|
562 |
-
x=time_series['date'],
|
563 |
-
y=time_series['ndwi'],
|
564 |
-
mode='lines+markers',
|
565 |
-
name='NDWI'
|
566 |
-
))
|
567 |
-
|
568 |
-
fig.add_trace(go.Scatter(
|
569 |
-
x=time_series['date'],
|
570 |
-
y=time_series['lai'],
|
571 |
-
mode='lines+markers',
|
572 |
-
name='LAI'
|
573 |
-
))
|
574 |
-
|
575 |
-
fig.add_trace(go.Scatter(
|
576 |
-
x=time_series['date'],
|
577 |
-
y=time_series['chl'],
|
578 |
-
mode='lines+markers',
|
579 |
-
name='CHL'
|
580 |
-
))
|
581 |
-
|
582 |
-
fig.update_layout(
|
583 |
-
title=f"Vegetation Indices Comparison for {selected_farm}",
|
584 |
-
xaxis_title="Date",
|
585 |
-
yaxis_title="Index Value",
|
586 |
-
legend_title="Index"
|
587 |
-
)
|
588 |
-
|
589 |
-
st.plotly_chart(fig, use_container_width=True)
|
590 |
else:
|
591 |
-
st.warning("
|
592 |
|
593 |
with tab3:
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
-
|
617 |
-
# Create forecast dataframe
|
618 |
-
forecast_df = pd.DataFrame(forecast)
|
619 |
-
|
620 |
-
# Plot temperature forecast
|
621 |
fig = go.Figure()
|
622 |
-
|
623 |
-
fig.add_trace(go.Scatter(
|
624 |
-
x=forecast_df['date'],
|
625 |
-
y=forecast_df['temp_max'],
|
626 |
-
mode='lines+markers',
|
627 |
-
name='Max Temp',
|
628 |
-
line=dict(color='red')
|
629 |
-
))
|
630 |
-
|
631 |
fig.add_trace(go.Scatter(
|
632 |
-
x=
|
633 |
-
y=
|
634 |
mode='lines+markers',
|
635 |
-
name='
|
636 |
-
line=dict(color='
|
|
|
637 |
))
|
638 |
-
|
639 |
fig.update_layout(
|
640 |
-
title=
|
641 |
-
xaxis_title=
|
642 |
-
yaxis_title=
|
643 |
-
|
|
|
|
|
|
|
644 |
)
|
645 |
-
|
646 |
st.plotly_chart(fig, use_container_width=True)
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
656 |
)
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
forecast_df,
|
663 |
-
x='date',
|
664 |
-
y='wind_speed',
|
665 |
-
title="Wind Speed Forecast",
|
666 |
-
labels={"date": "Date", "wind_speed": "Wind Speed (m/s)"},
|
667 |
-
markers=True
|
668 |
)
|
669 |
-
|
670 |
-
st.plotly_chart(fig, use_container_width=True)
|
671 |
else:
|
672 |
-
st.warning("
|
|
|
|
|
|
|
|
|
673 |
|
674 |
-
|
675 |
-
|
|
|
|
|
|
|
676 |
|
677 |
-
|
678 |
-
|
679 |
-
|
|
|
|
|
|
|
680 |
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
689 |
|
690 |
-
|
691 |
-
|
692 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
693 |
|
694 |
col1, col2, col3, col4 = st.columns(4)
|
695 |
|
696 |
with col1:
|
697 |
-
st.
|
|
|
|
|
|
|
698 |
|
699 |
with col2:
|
700 |
-
st.
|
|
|
|
|
|
|
701 |
|
702 |
with col3:
|
703 |
-
st.
|
|
|
|
|
|
|
704 |
|
705 |
with col4:
|
706 |
-
st.
|
|
|
|
|
|
|
707 |
|
708 |
-
|
709 |
-
|
710 |
-
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
|
|
|
|
719 |
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
mode='lines+markers',
|
724 |
-
name='LAI'
|
725 |
-
))
|
726 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
727 |
fig.update_layout(
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
legend_title="Index"
|
732 |
)
|
733 |
-
|
734 |
st.plotly_chart(fig, use_container_width=True)
|
735 |
-
|
736 |
-
# Weekly change
|
737 |
-
if len(weekly_data) > 1:
|
738 |
-
first_day = weekly_data.iloc[0]
|
739 |
-
last_day = weekly_data.iloc[-1]
|
740 |
-
|
741 |
-
ndvi_change = ((last_day['ndvi'] - first_day['ndvi']) / first_day['ndvi']) * 100 if first_day['ndvi'] != 0 else 0
|
742 |
-
lai_change = ((last_day['lai'] - first_day['lai']) / first_day['lai']) * 100 if first_day['lai'] != 0 else 0
|
743 |
-
|
744 |
-
col1, col2 = st.columns(2)
|
745 |
-
|
746 |
-
with col1:
|
747 |
-
st.metric("NDVI Change", f"{ndvi_change:.2f}%", delta=f"{ndvi_change:.2f}%")
|
748 |
-
|
749 |
-
with col2:
|
750 |
-
st.metric("LAI Change", f"{lai_change:.2f}%", delta=f"{lai_change:.2f}%")
|
751 |
-
|
752 |
-
# Growth status assessment
|
753 |
-
st.subheader("Growth Status Assessment")
|
754 |
-
|
755 |
-
if ndvi_change > 5 and lai_change > 5:
|
756 |
-
st.success("✅ Healthy Growth: The crop is showing good growth patterns with increasing vegetation indices.")
|
757 |
-
elif ndvi_change > 0 and lai_change > 0:
|
758 |
-
st.info("ℹ️ Moderate Growth: The crop is growing, but at a slower rate than expected.")
|
759 |
-
elif ndvi_change < 0 or lai_change < 0:
|
760 |
-
st.warning("⚠️ Growth Concern: The crop is showing signs of stress or declining health.")
|
761 |
-
|
762 |
-
# Recommendations
|
763 |
-
st.subheader("Recommendations")
|
764 |
-
|
765 |
-
if ndvi_change < 0:
|
766 |
-
st.warning("Consider checking for pest infestations or nutrient deficiencies.")
|
767 |
-
|
768 |
-
if ndwi_val < -0.3:
|
769 |
-
st.warning("Water stress detected. Consider irrigation schedule adjustments.")
|
770 |
-
|
771 |
-
if lai_val < 1.5:
|
772 |
-
st.warning("Low leaf area index. Investigate possible causes for poor canopy development.")
|
773 |
-
|
774 |
-
if chl_val < 1.5:
|
775 |
-
st.warning("Low chlorophyll content. Consider nitrogen fertilization.")
|
776 |
else:
|
777 |
-
st.warning("
|
778 |
-
else:
|
779 |
-
st.error("Failed to initialize Google Earth Engine. Please check your credentials.")
|
780 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
|
|
|
|
2 |
import pandas as pd
|
3 |
import numpy as np
|
4 |
+
import folium
|
|
|
|
|
|
|
5 |
from streamlit_folium import folium_static
|
6 |
+
import ee
|
7 |
+
import os
|
8 |
+
import json
|
9 |
+
import time
|
10 |
+
from datetime import datetime, timedelta
|
11 |
import plotly.express as px
|
12 |
import plotly.graph_objects as go
|
13 |
+
import altair as alt
|
14 |
+
from streamlit_option_menu import option_menu
|
15 |
+
from streamlit_lottie import st_lottie
|
16 |
+
import requests
|
17 |
+
import hydralit_components as hc
|
18 |
+
from streamlit_extras.colored_header import colored_header
|
19 |
+
from streamlit_extras.metric_cards import style_metric_cards
|
20 |
+
from streamlit_extras.chart_container import chart_container
|
21 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
22 |
+
from streamlit_card import card
|
23 |
+
import pydeck as pdk
|
24 |
+
import math
|
25 |
+
from sklearn.linear_model import LinearRegression
|
26 |
|
27 |
+
# تنظیمات صفحه با تم سفارشی
|
28 |
st.set_page_config(
|
29 |
+
page_title="سامانه هوشمند پایش مزارع نیشکر دهخدا",
|
30 |
page_icon="🌿",
|
31 |
layout="wide",
|
32 |
initial_sidebar_state="expanded"
|
33 |
)
|
34 |
|
35 |
+
# CSS سفارشی با طراحی سبز مدرن و انیمیشنها
|
36 |
+
st.markdown("""
|
37 |
+
<style>
|
38 |
+
@import url('https://fonts.googleapis.com/css2?family=Vazirmatn:wght@100;200;300;400;500;600;700;800;900&display=swap');
|
|
|
|
|
|
|
|
|
39 |
|
40 |
+
* {
|
41 |
+
font-family: 'Vazirmatn', sans-serif !important;
|
42 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
/* استایل کلی صفحه */
|
45 |
+
.main {
|
46 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #e4e9f2 100%);
|
47 |
+
}
|
48 |
|
49 |
+
/* استایل هدر */
|
50 |
+
.main-header {
|
51 |
+
background: linear-gradient(90deg, #1a8754 0%, #115740 100%);
|
52 |
+
padding: 1.5rem;
|
53 |
+
border-radius: 12px;
|
54 |
+
box-shadow: 0 8px 32px rgba(0, 0, 0, 0.1);
|
55 |
+
margin-bottom: 2rem;
|
56 |
+
position: relative;
|
57 |
+
overflow: hidden;
|
58 |
+
animation: header-glow 3s infinite alternate;
|
59 |
+
}
|
60 |
|
61 |
+
@keyframes header-glow {
|
62 |
+
0% { box-shadow: 0 8px 32px rgba(26, 135, 84, 0.1); }
|
63 |
+
100% { box-shadow: 0 8px 32px rgba(26, 135, 84, 0.3); }
|
64 |
+
}
|
|
|
|
|
|
|
65 |
|
66 |
+
.main-header h1 {
|
67 |
+
color: white;
|
68 |
+
font-weight: 700;
|
69 |
+
margin: 0;
|
70 |
+
position: relative;
|
71 |
+
z-index: 1;
|
72 |
+
}
|
73 |
|
74 |
+
.main-header p {
|
75 |
+
color: rgba(255, 255, 255, 0.8);
|
76 |
+
margin: 0;
|
77 |
+
position: relative;
|
78 |
+
z-index: 1;
|
79 |
+
}
|
80 |
|
81 |
+
/* استایل منوی ناوبری */
|
82 |
+
.st-emotion-cache-1lcbz7b {
|
83 |
+
background-color: transparent !important;
|
84 |
+
padding: 0 !important;
|
85 |
+
margin-bottom: 20px !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
}
|
87 |
|
88 |
+
.st-emotion-cache-1j7d69d {
|
89 |
+
--hover-color: #e9f7ef !important;
|
90 |
+
border-radius: 10px !important;
|
91 |
+
font-size: 16px !important;
|
92 |
+
text-align: center !important;
|
93 |
+
margin: 0 !important;
|
94 |
}
|
95 |
|
96 |
+
.st-emotion-cache-1j7d69d:hover {
|
97 |
+
background-color: #e9f7ef !important;
|
|
|
|
|
98 |
}
|
99 |
|
100 |
+
.st-emotion-cache-1j7d69d[data-selected="true"] {
|
101 |
+
background-color: #1a8754 !important;
|
102 |
+
color: white !important;
|
103 |
+
font-weight: 600 !important;
|
104 |
}
|
105 |
|
106 |
+
.st-emotion-cache-1m5q2i0 {
|
107 |
+
color: #1a8754 !important;
|
108 |
+
font-size: 18px !important;
|
109 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
+
/* استایل کارتهای متریک */
|
112 |
+
.metric-card {
|
113 |
+
background: white;
|
114 |
+
border-radius: 12px;
|
115 |
+
padding: 1.5rem;
|
116 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.05);
|
117 |
+
transition: all 0.3s ease;
|
118 |
+
text-align: center;
|
|
|
|
|
|
|
|
|
|
|
119 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
+
.metric-card:hover {
|
122 |
+
transform: translateY(-5px);
|
123 |
+
box-shadow: 0 8px 30px rgba(0, 0, 0, 0.1);
|
124 |
+
}
|
125 |
|
126 |
+
.metric-card .metric-value {
|
127 |
+
font-size: 2.5rem;
|
128 |
+
font-weight: 700;
|
129 |
+
color: #1a8754;
|
130 |
+
margin-bottom: 0.5rem;
|
131 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
+
.metric-card .metric-label {
|
134 |
+
font-size: 1rem;
|
135 |
+
color: #6c757d;
|
136 |
+
}
|
137 |
|
138 |
+
/* استایل کانتینر نقشه */
|
139 |
+
.map-container {
|
140 |
+
border-radius: 12px;
|
141 |
+
overflow: hidden;
|
142 |
+
box-shadow: 0 4px 20px rgba(0, 0, 0, 0.05);
|
143 |
+
}
|
144 |
|
145 |
+
/* استایل تبها */
|
146 |
+
.stTabs [data-baseweb="tab-list"] {
|
147 |
+
gap: 8px;
|
148 |
+
}
|
|
|
|
|
149 |
|
150 |
+
.stTabs [data-baseweb="tab"] {
|
151 |
+
border-radius: 4px 4px 0px 0px;
|
152 |
+
padding: 10px 16px;
|
153 |
+
background-color: #f8f9fa;
|
154 |
+
}
|
155 |
|
156 |
+
.stTabs [aria-selected="true"] {
|
157 |
+
background-color: #1a8754 !important;
|
158 |
+
color: white !important;
|
159 |
+
}
|
160 |
|
161 |
+
/* استایل سایدبار */
|
162 |
+
[data-testid="stSidebar"] {
|
163 |
+
background-color: #ffffff;
|
164 |
+
border-right: 1px solid #e9ecef;
|
165 |
+
}
|
166 |
|
167 |
+
/* انیمیشنها */
|
168 |
+
@keyframes fadeIn {
|
169 |
+
0% { opacity: 0; transform: translateY(20px); }
|
170 |
+
100% { opacity: 1; transform: translateY(0); }
|
171 |
+
}
|
172 |
|
173 |
+
.animate-fadeIn {
|
174 |
+
animation: fadeIn 0.5s ease forwards;
|
175 |
+
}
|
176 |
|
177 |
+
/* استایل دکمهها */
|
178 |
+
.stButton>button {
|
179 |
+
border-radius: 50px;
|
180 |
+
padding: 0.5rem 1.5rem;
|
181 |
+
font-weight: 600;
|
182 |
+
transition: all 0.3s ease;
|
183 |
+
border: none;
|
184 |
+
background: linear-gradient(90deg, #1a8754 0%, #115740 100%);
|
185 |
+
color: white;
|
186 |
+
}
|
187 |
+
|
188 |
+
.stButton>button:hover {
|
189 |
+
transform: translateY(-2px);
|
190 |
+
box-shadow: 0 4px 12px rgba(0, 0, 0, 0.1);
|
191 |
+
background: linear-gradient(90deg, #115740 0%, #1a8754 100%);
|
192 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
+
/* استایل فوتر */
|
195 |
+
footer {
|
196 |
+
position: fixed;
|
197 |
+
left: 0;
|
198 |
+
bottom: 0;
|
199 |
+
width: 100%;
|
200 |
+
background-color: #1a8754;
|
201 |
+
color: white;
|
202 |
+
text-align: center;
|
203 |
+
padding: 10px 0;
|
204 |
+
font-family: 'Vazirmatn', sans-serif;
|
205 |
+
}
|
206 |
+
</style>
|
207 |
+
""", unsafe_allow_html=True)
|
208 |
+
|
209 |
+
# تابع بارگذاری دادهها
|
210 |
+
@st.cache_data
|
211 |
+
def load_farm_data():
|
212 |
+
try:
|
213 |
+
df = pd.read_csv("کراپ لاگ کلی (1).csv", encoding='utf-8-sig')
|
214 |
+
return df
|
215 |
+
except Exception as e:
|
216 |
+
st.error(f"خطا در بارگذاری دادههای کراپ لاگ: {e}")
|
217 |
+
return pd.DataFrame()
|
218 |
+
|
219 |
+
@st.cache_data
|
220 |
+
def load_coordinates_data():
|
221 |
+
try:
|
222 |
+
coords_df = pd.read_csv("farm_coordinates.csv", encoding='utf-8-sig')
|
223 |
+
return coords_df
|
224 |
+
except Exception as e:
|
225 |
+
st.error(f"خطا در بارگذاری دادههای مختصات: {e}")
|
226 |
+
return pd.DataFrame()
|
227 |
+
|
228 |
+
@st.cache_data
|
229 |
+
def load_day_data():
|
230 |
+
try:
|
231 |
+
day_df = pd.read_csv("پایگاه داده (1).csv", encoding='utf-8-sig')
|
232 |
+
return day_df
|
233 |
+
except Exception as e:
|
234 |
+
st.error(f"خطا در بارگذاری دادههای روز: {e}")
|
235 |
+
return pd.DataFrame()
|
236 |
+
|
237 |
+
# تابع بارگذاری انیمیشن
|
238 |
+
@st.cache_data
|
239 |
+
def load_lottie_url(url: str):
|
240 |
+
r = requests.get(url)
|
241 |
+
if r.status_code != 200:
|
242 |
+
return None
|
243 |
+
return r.json()
|
244 |
+
|
245 |
+
# مقداردهی اولیه Earth Engine
|
246 |
+
@st.cache_resource
|
247 |
+
def initialize_earth_engine():
|
248 |
+
try:
|
249 |
+
service_account = 'dehkhodamap-e9f0da4ce9f6514021@ee-esmaeilkiani13877.iam.gserviceaccount.com'
|
250 |
+
credentials_dict = {
|
251 |
+
"type": "service_account",
|
252 |
+
"project_id": "ee-esmaeilkiani13877",
|
253 |
+
"private_key_id": "cfdea6eaf4115cb6462626743e4b15df85fd0c7f",
|
254 |
+
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQCjeOvgKi+gWK6k\n2/0RXOA3LAo51DVxA1ja9v0qFOn4FNOStxkwlKvcK8yDQNb53FPORHFIUHvev3y7\niHr/UEUqnn5Rzjbf0k3qWB/fS377/UP4VznMsFpKiHNxCBtaNS8KLk6Rat6Y7Xfm\nJfpSU7ZjYZmVc81M/7iFofGUSJoHYpxhyt3rjp53huxJNNW5e12TFnLkyg1Ja/9X\nGMTt+vjVcO4XhQCIlaGVdSKS2sHlHgzpzE6KtuUKjDMEBqPkWF4xc16YavYltwPd\nqULCu2/t6dczhYL4NEFj8wL+KJqOojfsyoWmzqPFx1Bbxk4BVPk/lslq9+m9p5kq\nSCG0/9W9AgMBAAECggEAEGchw+x3uu8rFv+79PIMzXxtyj+w3RYo5E/EN2TB1VLB\nqAcXT/ibBgyfCMyIxamF/zx+4XKx+zfbnDWlodi8F/qvUiYO+4ZuqwUMras1orNX\nDqQx+If5h2EJtF3L4NFVVwAuggjnLREm5sEIzRn5Qx+X+ZcVEpTWPxJw2yAt1G+3\nk311KqD+zR7jQfchXU4xQQ1ZoHkdAJ/DPGun6x+HUOq7Gus73A6IzLp12ZoiHN3n\nkY+lG8cMs039QAe/OhZFEo5I9cNSaI688HmsLRivZ26WoPEnwcN0MHQGtXqGmMUI\nCcpgJqllqdWMuBlYcpSadn7rZzPujSlzIxkvieLeAQKBgQDNTYUWZdGbA2sHcBpJ\nrqKwDYF/AwZtjx+hXHVBRbR6DJ1bO2P9n51ioTMP/H9K61OBAMZ7w71xJ2I+9Snv\ncYumPWoiUwiOhTh3O7nYz6mR7sK0HuUCZfYdaxJVnLgNCgj+w9AxYnkzOyL9/QvJ\nknrlMKf4H59NbapBqy5spilq1QKBgQDL1wkGHhoTuLb5Xp3X3CX4S7WMke4T01bO\nPpMmlewVgH5lK5wTcZjB8QRO2QFQtUZTP/Ghv6ZH4h/3P9/ZIF3hV5CSsUkr/eFf\nMY+fQL1K/puwfZbSDcH1GtDToOyoLFIvPXBJo0Llg/oF2TK1zGW3cPszeDf/Tm6x\nUwUMw2BjSQKBgEJzAMyLEBi4NoAlzJxkpcuN04gkloQHexljL6B8yzlls9i/lFGW\nw/4UZs6ZzymUmWZ7tcKBTGO/d5EhEP2rJqQb5KpPbcmTXP9amYCPVjchrGtYRI9O\nKSbEbR7ApuGxic/L2Sri0I/AaEcFDDel7ZkY8oTg11LcV+sBWPlZnrYxAoGBALXj\n/DlpQvu2KA/9TfwAhiE57Zax4S/vtdX0IHqd7TyCnEbK00rGYvksiBuTqIjMOSSw\nOn2K9mXOcZe/d4/YQe2CpY9Ag3qt4R2ArBf/POpep66lYp+thxWgCBfP0V1/rxZY\nTIppFJiZW9E8LvPqoBlAx+b1r4IyCrRQ0IDDFo+BAoGBAMCff4XKXHlV2SDOL5uh\nV/f9ApEdF4leuo+hoMryKuSQ9Y/H0A/Lzw6KP5FLvVtqc0Kw2D1oLy8O72a1xwfY\n8dpZMNzKAWWS7viN0oC+Ebj2Foc2Mn/J6jdhtP/YRLTqvoTWCa2rVcn4R1BurMIf\nLa4DJE9BagGdVNTDtynBhKhZ\n-----END PRIVATE KEY-----\n",
|
255 |
+
"client_email": "dehkhodamap-e9f0da4ce9f6514021@ee-esmaeilkiani13877.iam.gserviceaccount.com",
|
256 |
+
"client_id": "113062529451626176784",
|
257 |
+
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
|
258 |
+
"token_uri": "https://oauth2.googleapis.com/token",
|
259 |
+
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
|
260 |
+
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/dehkhodamap-e9f0da4ce9f6514021%40ee-esmaeilkiani13877.iam.gserviceaccount.com",
|
261 |
+
"universe_domain": "googleapis.com"
|
262 |
+
}
|
263 |
+
credentials_file = 'ee-esmaeilkiani13877-cfdea6eaf411.json'
|
264 |
+
with open(credentials_file, 'w') as f:
|
265 |
+
json.dump(credentials_dict, f)
|
266 |
+
credentials = ee.ServiceAccountCredentials(service_account, credentials_file)
|
267 |
+
ee.Initialize(credentials)
|
268 |
+
os.remove(credentials_file)
|
269 |
+
return True
|
270 |
+
except Exception as e:
|
271 |
+
st.error(f"خطا در اتصال به Earth Engine: {e}")
|
272 |
+
return False
|
273 |
+
|
274 |
+
# تابع ایجاد نقشه Earth Engine
|
275 |
+
def create_ee_map(farm_id, date_str, layer_type="NDVI"):
|
276 |
+
try:
|
277 |
+
farm_row = coordinates_df[coordinates_df['مزرعه'] == farm_id].iloc[0]
|
278 |
+
lat, lon = farm_row['عرض جغرافیایی'], farm_row['طول جغرافیایی']
|
279 |
+
m = folium.Map(location=[lat, lon], zoom_start=14, tiles='CartoDB positron')
|
280 |
+
date_obj = datetime.strptime(date_str, '%Y-%m-%d')
|
281 |
+
start_date = (date_obj - timedelta(days=5)).strftime('%Y-%m-%d')
|
282 |
+
end_date = (date_obj + timedelta(days=5)).strftime('%Y-%m-%d')
|
283 |
+
region = ee.Geometry.Point([lon, lat]).buffer(1500)
|
284 |
+
s2 = ee.ImageCollection('COPERNICUS/S2_SR') \
|
285 |
+
.filterDate(start_date, end_date) \
|
286 |
+
.filterBounds(region) \
|
287 |
+
.sort('CLOUDY_PIXEL_PERCENTAGE') \
|
288 |
+
.first()
|
289 |
+
if layer_type == "NDVI":
|
290 |
+
index = s2.normalizedDifference(['B8', 'B4']).rename('NDVI')
|
291 |
+
viz_params = {'min': -0.2, 'max': 0.8, 'palette': ['#ff0000', '#ff4500', '#ffd700', '#32cd32', '#006400']}
|
292 |
+
legend_title = 'شاخص پوشش گیاهی (NDVI)'
|
293 |
+
elif layer_type == "NDMI":
|
294 |
+
index = s2.normalizedDifference(['B8', 'B11']).rename('NDMI')
|
295 |
+
viz_params = {'min': -0.5, 'max': 0.5, 'palette': ['#8b0000', '#ff8c00', '#00ced1', '#00b7eb', '#00008b']}
|
296 |
+
legend_title = 'شاخص رطوبت (NDMI)'
|
297 |
+
elif layer_type == "EVI":
|
298 |
+
nir = s2.select('B8')
|
299 |
+
red = s2.select('B4')
|
300 |
+
blue = s2.select('B2')
|
301 |
+
index = nir.subtract(red).multiply(2.5).divide(nir.add(red.multiply(6)).subtract(blue.multiply(7.5)).add(1)).rename('EVI')
|
302 |
+
viz_params = {'min': 0, 'max': 1, 'palette': ['#d73027', '#f46d43', '#fdae61', '#fee08b', '#4caf50']}
|
303 |
+
legend_title = 'شاخص پیشرفته گیاهی (EVI)'
|
304 |
+
elif layer_type == "NDWI":
|
305 |
+
index = s2.normalizedDifference(['B3', 'B8']).rename('NDWI')
|
306 |
+
viz_params = {'min': -0.5, 'max': 0.5, 'palette': ['#00008b', '#00b7eb', '#add8e6', '#fdae61', '#d73027']}
|
307 |
+
legend_title = 'شاخص آب (NDWI)'
|
308 |
+
map_id_dict = ee.Image(index).getMapId(viz_params)
|
309 |
+
folium.TileLayer(
|
310 |
+
tiles=map_id_dict['tile_fetcher'].url_format,
|
311 |
+
attr='Google Earth Engine',
|
312 |
+
name=layer_type,
|
313 |
+
overlay=True,
|
314 |
+
control=True
|
315 |
+
).add_to(m)
|
316 |
+
folium.Marker(
|
317 |
+
[lat, lon],
|
318 |
+
popup=f'مزرعه {farm_id}',
|
319 |
+
tooltip=f'مزرعه {farm_id}',
|
320 |
+
icon=folium.Icon(color='green', icon='leaf')
|
321 |
+
).add_to(m)
|
322 |
+
folium.Circle(
|
323 |
+
[lat, lon],
|
324 |
+
radius=1500,
|
325 |
+
color='green',
|
326 |
+
fill=True,
|
327 |
+
fill_color='green',
|
328 |
+
fill_opacity=0.1
|
329 |
+
).add_to(m)
|
330 |
+
folium.LayerControl().add_to(m)
|
331 |
+
legend_html = '''
|
332 |
+
<div style="position: fixed;
|
333 |
+
bottom: 50px; right: 50px;
|
334 |
+
border: 2px solid grey; z-index: 9999;
|
335 |
+
background-color: white;
|
336 |
+
padding: 10px;
|
337 |
+
border-radius: 5px;
|
338 |
+
direction: rtl;
|
339 |
+
font-family: 'Vazirmatn', sans-serif;">
|
340 |
+
<div style="font-size: 14px; font-weight: bold; margin-bottom: 5px;">''' + legend_title + '''</div>
|
341 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
342 |
+
<div style="background: ''' + viz_params['palette'][0] + '''; width: 20px; height: 20px; margin-left: 5px;"></div>
|
343 |
+
<span>کم</span>
|
344 |
+
</div>
|
345 |
+
<div style="display: flex; align-items: center; margin-bottom: 5px;">
|
346 |
+
<div style="background: ''' + viz_params['palette'][2] + '''; width: 20px; height: 20px; margin-left: 5px;"></div>
|
347 |
+
<span>متوسط</span>
|
348 |
+
</div>
|
349 |
+
<div style="display: flex; align-items: center;">
|
350 |
+
<div style="background: ''' + viz_params['palette'][-1] + '''; width: 20px; height: 20px; margin-left: 5px;"></div>
|
351 |
+
<span>زیاد</span>
|
352 |
+
</div>
|
353 |
+
</div>
|
354 |
+
'''
|
355 |
+
m.get_root().html.add_child(folium.Element(legend_html))
|
356 |
+
return m
|
357 |
+
except Exception as e:
|
358 |
+
st.error(f"خطا در ایجاد نقشه: {e}")
|
359 |
+
return None
|
360 |
+
|
361 |
+
# تابع محاسبه آمار مزرعه
|
362 |
+
def calculate_farm_stats(farm_id, layer_type="NDVI"):
|
363 |
+
farm_data = farm_df[farm_df['مزرعه'] == farm_id]
|
364 |
+
if layer_type == "NDVI":
|
365 |
+
stats = {
|
366 |
+
'mean': farm_data['ارتفاع هفته جاری مزرعه'].mean() if not farm_data.empty else 0,
|
367 |
+
'min': farm_data['ارتفاع هفته جاری مزرعه'].min() if not farm_data.empty else 0,
|
368 |
+
'max': farm_data['ارتفاع هفته جاری مزرعه'].max() if not farm_data.empty else 0,
|
369 |
+
'std_dev': farm_data['ارتفاع هفته جاری مزرعه'].std() if not farm_data.empty else 0,
|
370 |
+
'histogram_data': farm_data['ارتفاع هفته جاری مزرعه'].values if not farm_data.empty else np.array([])
|
371 |
+
}
|
372 |
+
elif layer_type == "NDMI":
|
373 |
+
stats = {
|
374 |
+
'mean': farm_data['رطوبت غلاف فعلی'].mean() if not farm_data.empty else 0,
|
375 |
+
'min': farm_data['رطوبت غلاف فعلی'].min() if not farm_data.empty else 0,
|
376 |
+
'max': farm_data['رطوبت غلاف فعلی'].max() if not farm_data.empty else 0,
|
377 |
+
'std_dev': farm_data['رطوبت غلاف فعلی'].std() if not farm_data.empty else 0,
|
378 |
+
'histogram_data': farm_data['رطوبت غلاف فعلی'].values if not farm_data.empty else np.array([])
|
379 |
+
}
|
380 |
+
return stats
|
381 |
+
|
382 |
+
# تابع تولید دادههای رشد
|
383 |
+
def generate_real_growth_data(selected_variety="all", selected_age="all"):
|
384 |
+
filtered_farms = farm_df
|
385 |
+
if selected_variety != "all":
|
386 |
+
filtered_farms = filtered_farms[filtered_farms['رقم'] == selected_variety]
|
387 |
+
if selected_age != "all":
|
388 |
+
filtered_farms = filtered_farms[filtered_farms['سن'] == selected_age]
|
389 |
+
|
390 |
+
farm_growth_data = []
|
391 |
+
weeks = filtered_farms['هفته'].unique()
|
392 |
+
for farm_id in filtered_farms['مزرعه'].unique():
|
393 |
+
farm_data = filtered_farms[filtered_farms['مزرعه'] == farm_id]
|
394 |
+
growth_data = {
|
395 |
+
'farm_id': farm_id,
|
396 |
+
'variety': farm_data['رقم'].iloc[0] if not farm_data.empty else 'Unknown',
|
397 |
+
'age': farm_data['سن'].iloc[0] if not farm_data.empty else 'Unknown',
|
398 |
+
'weeks': weeks,
|
399 |
+
'heights': [farm_data[farm_data['هفته'] == week]['ارتفاع هفته جاری مزرعه'].mean() if not farm_data[farm_data['هفته'] == week].empty else 0 for week in weeks]
|
400 |
+
}
|
401 |
+
farm_growth_data.append(growth_data)
|
402 |
|
403 |
+
if farm_growth_data:
|
404 |
+
avg_heights = []
|
405 |
+
for week in weeks:
|
406 |
+
week_heights = [farm['heights'][list(weeks).index(week)] for farm in farm_growth_data if farm['heights'][list(weeks).index(week)] > 0]
|
407 |
+
avg_heights.append(round(sum(week_heights) / len(week_heights)) if week_heights else 0)
|
408 |
+
|
409 |
+
avg_growth_data = {
|
410 |
+
'farm_id': 'میانگین',
|
411 |
+
'variety': 'همه',
|
412 |
+
'age': 'همه',
|
413 |
+
'weeks': weeks,
|
414 |
+
'heights': avg_heights
|
415 |
+
}
|
416 |
+
return {'individual': farm_growth_data, 'average': avg_growth_data}
|
417 |
+
return {
|
418 |
+
'individual': [],
|
419 |
+
'average': {'farm_id': 'میانگین', 'variety': 'همه', 'age': 'همه', 'weeks': weeks, 'heights': [0] * len(weeks)}
|
420 |
+
}
|
421 |
+
|
422 |
+
# مقداردهی اولیه و بارگذاری دادهها
|
423 |
+
ee_initialized = initialize_earth_engine()
|
424 |
+
farm_df = load_farm_data()
|
425 |
+
coordinates_df = load_coordinates_data()
|
426 |
+
day_df = load_day_data()
|
427 |
+
|
428 |
+
# بارگذاری انیمیشنها
|
429 |
+
lottie_farm = load_lottie_url('https://assets5.lottiefiles.com/packages/lf20_ystsffqy.json')
|
430 |
+
lottie_analysis = load_lottie_url('https://assets3.lottiefiles.com/packages/lf20_qp1q7mct.json')
|
431 |
+
lottie_report = load_lottie_url('https://assets9.lottiefiles.com/packages/lf20_vwcugezu.json')
|
432 |
+
|
433 |
+
# ایجاد حالت جلسه برای ذخیره دادهها
|
434 |
+
if 'heights_df' not in st.session_state:
|
435 |
+
st.session_state.heights_df = farm_df.copy()
|
436 |
+
|
437 |
+
# هدر اصلی
|
438 |
+
st.markdown('<div class="main-header">', unsafe_allow_html=True)
|
439 |
+
st.markdown('<h1>سامانه هوشمند پایش مزارع نیشکر دهخدا</h1>', unsafe_allow_html=True)
|
440 |
+
st.markdown('<p>پلتفرم جامع مدیریت، پایش و تحلیل دادههای مزارع نیشکر با استفاده از تصاویر ماهوارهای و هوش مصنوعی</p>', unsafe_allow_html=True)
|
441 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
442 |
+
|
443 |
+
# منوی ناوبری مدرن
|
444 |
+
selected = option_menu(
|
445 |
+
menu_title=None,
|
446 |
+
options=["داشبورد", "نقشه مزارع", "ورود اطلاعات", "تحلیل دادهها", "گزارشگیری", "تنظیمات"],
|
447 |
+
icons=["speedometer2", "map", "pencil-square", "graph-up", "file-earmark-text", "gear"],
|
448 |
+
menu_icon="cast",
|
449 |
+
default_index=0,
|
450 |
+
orientation="horizontal",
|
451 |
+
styles={
|
452 |
+
"container": {"padding": "0!important", "background-color": "transparent", "margin-bottom": "20px"},
|
453 |
+
"icon": {"color": "#1a8754", "font-size": "18px"},
|
454 |
+
"nav-link": {"font-size": "16px", "text-align": "center", "margin":"0px", "--hover-color": "#e9f7ef", "border-radius": "10px"},
|
455 |
+
"nav-link-selected": {"background-color": "#1a8754", "color": "white", "font-weight": "600"},
|
456 |
+
}
|
457 |
+
)
|
458 |
+
|
459 |
+
# صفحه داشبورد
|
460 |
+
if selected == "داشبورد":
|
461 |
+
# متریکهای داشبورد
|
462 |
+
col1, col2, col3, col4 = st.columns(4)
|
463 |
+
|
464 |
+
with col1:
|
465 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
466 |
+
st.markdown(f'<div class="metric-value">{len(farm_df["مزرعه"].unique())}</div>', unsafe_allow_html=True)
|
467 |
+
st.markdown('<div class="metric-label">تعداد مزارع</div>', unsafe_allow_html=True)
|
468 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
469 |
+
|
470 |
+
with col2:
|
471 |
+
active_farms = int(len(farm_df["مزرعه"].unique()) * 0.85)
|
472 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
473 |
+
st.markdown(f'<div class="metric-value">{active_farms}</div>', unsafe_allow_html=True)
|
474 |
+
st.markdown('<div class="metric-label">مزارع فعال</div>', unsafe_allow_html=True)
|
475 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
476 |
+
|
477 |
+
with col3:
|
478 |
+
avg_height = farm_df['ارتفاع هفته جاری مزرعه'].mean()
|
479 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
480 |
+
st.markdown(f'<div class="metric-value">{avg_height:.1f} cm</div>', unsafe_allow_html=True)
|
481 |
+
st.markdown('<div class="metric-label">میانگین ارتفاع</div>', unsafe_allow_html=True)
|
482 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
483 |
+
|
484 |
+
with col4:
|
485 |
+
avg_moisture = farm_df['رطوبت غلاف فعلی'].mean()
|
486 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
487 |
+
st.markdown(f'<div class="metric-value">{avg_moisture:.1f}%</div>', unsafe_allow_html=True)
|
488 |
+
st.markdown('<div class="metric-label">میانگین رطوبت</div>', unsafe_allow_html=True)
|
489 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
490 |
+
|
491 |
+
# تبهای داشبورد
|
492 |
+
tab1, tab2, tab3, tab4 = st.tabs(["نمای کلی", "نقشه مزارع", "نمودارها", "دادهها"])
|
493 |
|
494 |
with tab1:
|
495 |
+
st.markdown("### توزیع واریتهها و سن محصول")
|
496 |
+
|
497 |
+
col1, col2 = st.columns(2)
|
498 |
+
|
499 |
+
with col1:
|
500 |
+
variety_counts = farm_df['رقم'].value_counts().reset_index()
|
501 |
+
variety_counts.columns = ['رقم', 'تعداد']
|
502 |
+
fig = px.pie(
|
503 |
+
variety_counts,
|
504 |
+
values='تعداد',
|
505 |
+
names='رقم',
|
506 |
+
title='توزیع واریتهها',
|
507 |
+
color_discrete_sequence=px.colors.sequential.Greens_r
|
508 |
+
)
|
509 |
+
fig.update_traces(textposition='inside', textinfo='percent+label')
|
510 |
+
fig.update_layout(
|
511 |
+
font=dict(family="Vazirmatn"),
|
512 |
+
legend=dict(orientation="h", yanchor="bottom", y=-0.3, xanchor="center", x=0.5)
|
513 |
+
)
|
514 |
+
st.plotly_chart(fig, use_container_width=True)
|
515 |
+
|
516 |
+
with col2:
|
517 |
+
age_counts = farm_df['سن'].value_counts().reset_index()
|
518 |
+
age_counts.columns = ['سن', 'تعداد']
|
519 |
+
fig = px.pie(
|
520 |
+
age_counts,
|
521 |
+
values='تعداد',
|
522 |
+
names='سن',
|
523 |
+
title='توزیع سن محصول',
|
524 |
+
color_discrete_sequence=px.colors.sequential.Blues_r
|
525 |
+
)
|
526 |
+
fig.update_traces(textposition='inside', textinfo='percent+label')
|
527 |
+
fig.update_layout(
|
528 |
+
font=dict(family="Vazirmatn"),
|
529 |
+
legend=dict(orientation="h", yanchor="bottom", y=-0.3, xanchor="center", x=0.5)
|
530 |
+
)
|
531 |
+
st.plotly_chart(fig, use_container_width=True)
|
532 |
+
|
533 |
+
st.markdown("### اطلاعات کلی مزارع")
|
534 |
+
|
535 |
+
total_area = farm_df['مساحت'].sum()
|
536 |
+
|
537 |
+
col1, col2, col3 = st.columns(3)
|
538 |
+
col1.metric("تعداد کل مزارع", f"{len(farm_df['مزرعه'].unique())}")
|
539 |
+
col2.metric("مساحت کل (هکتار)", f"{total_area:.2f}")
|
540 |
+
col3.metric("تعداد کانالها", f"{farm_df['کانال'].nunique()}")
|
541 |
+
|
542 |
+
st_lottie(lottie_farm, height=300, key="farm_animation")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
543 |
|
544 |
with tab2:
|
545 |
+
st.markdown("### نقشه مزارع")
|
546 |
+
|
547 |
+
if coordinates_df is not None and not coordinates_df.empty:
|
548 |
+
m = folium.Map(location=[31.45, 48.72], zoom_start=12, tiles='CartoDB positron')
|
549 |
+
for _, farm in coordinates_df.iterrows():
|
550 |
+
lat = farm['عرض جغرافیایی']
|
551 |
+
lon = farm['طول جغرافیایی']
|
552 |
+
name = farm['مزرعه']
|
553 |
+
farm_info = farm_df[farm_df['مزرعه'] == name]
|
554 |
+
if not farm_info.empty:
|
555 |
+
variety = farm_info['رقم'].iloc[0]
|
556 |
+
age = farm_info['سن'].iloc[0]
|
557 |
+
area = farm_info['مساحت'].iloc[0]
|
558 |
+
popup_text = f"""
|
559 |
+
<div style="direction: rtl; text-align: right; font-family: 'Vazirmatn', sans-serif;">
|
560 |
+
<h4>مزرعه {name}</h4>
|
561 |
+
<p>واریته: {variety}</p>
|
562 |
+
<p>سن: {age}</p>
|
563 |
+
<p>مساحت: {area} هکتار</p>
|
564 |
+
</div>
|
565 |
+
"""
|
566 |
+
else:
|
567 |
+
popup_text = f"<div style='direction: rtl;'>مزرعه {name}</div>"
|
568 |
+
folium.Marker(
|
569 |
+
[lat, lon],
|
570 |
+
popup=folium.Popup(popup_text, max_width=300),
|
571 |
+
tooltip=f"مزرعه {name}",
|
572 |
+
icon=folium.Icon(color='green', icon='leaf')
|
573 |
+
).add_to(m)
|
574 |
+
st.markdown('<div class="map-container">', unsafe_allow_html=True)
|
575 |
+
folium_static(m, width=1000, height=600)
|
576 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
else:
|
578 |
+
st.warning("دادههای مختصات در دسترس نیست.")
|
579 |
|
580 |
with tab3:
|
581 |
+
st.markdown("### نمودار رشد هفتگی")
|
582 |
+
|
583 |
+
col1, col2 = st.columns(2)
|
584 |
+
with col1:
|
585 |
+
selected_variety = st.selectbox(
|
586 |
+
"انتخاب واریته",
|
587 |
+
["all"] + list(farm_df['رقم'].unique()),
|
588 |
+
format_func=lambda x: "همه واریتهها" if x == "all" else x
|
589 |
+
)
|
590 |
+
|
591 |
+
with col2:
|
592 |
+
selected_age = st.selectbox(
|
593 |
+
"انتخاب سن",
|
594 |
+
["all"] + list(farm_df['سن'].unique()),
|
595 |
+
format_func=lambda x: "همه سنین" if x == "all" else x
|
596 |
+
)
|
597 |
+
|
598 |
+
growth_data = generate_real_growth_data(selected_variety, selected_age)
|
599 |
+
|
600 |
+
chart_tab1, chart_tab2 = st.tabs(["میانگین رشد", "رشد مزارع فردی"])
|
601 |
+
|
602 |
+
with chart_tab1:
|
603 |
+
avg_data = growth_data['average']
|
|
|
|
|
|
|
|
|
604 |
fig = go.Figure()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
605 |
fig.add_trace(go.Scatter(
|
606 |
+
x=avg_data['weeks'],
|
607 |
+
y=avg_data['heights'],
|
608 |
mode='lines+markers',
|
609 |
+
name='میانگین رشد',
|
610 |
+
line=dict(color='#1a8754', width=3),
|
611 |
+
marker=dict(size=8, color='#1a8754')
|
612 |
))
|
|
|
613 |
fig.update_layout(
|
614 |
+
title='میانگین رشد هفتگی',
|
615 |
+
xaxis_title='هفته',
|
616 |
+
yaxis_title='ارتفاع (سانتیمتر)',
|
617 |
+
font=dict(family='Vazirmatn', size=14),
|
618 |
+
hovermode='x unified',
|
619 |
+
template='plotly_white',
|
620 |
+
height=500
|
621 |
)
|
|
|
622 |
st.plotly_chart(fig, use_container_width=True)
|
623 |
+
|
624 |
+
with chart_tab2:
|
625 |
+
if growth_data['individual']:
|
626 |
+
fig = go.Figure()
|
627 |
+
colors = ['#1a8754', '#1976d2', '#e65100', '#9c27b0', '#d32f2f']
|
628 |
+
for i, farm_data in enumerate(growth_data['individual'][:5]):
|
629 |
+
fig.add_trace(go.Scatter(
|
630 |
+
x=farm_data['weeks'],
|
631 |
+
y=farm_data['heights'],
|
632 |
+
mode='lines+markers',
|
633 |
+
name=f"مزرعه {farm_data['farm_id']}",
|
634 |
+
line=dict(color=colors[i % len(colors)], width=2),
|
635 |
+
marker=dict(size=6, color=colors[i % len(colors)])
|
636 |
+
))
|
637 |
+
fig.update_layout(
|
638 |
+
title='رشد هفتگی مزارع فردی',
|
639 |
+
xaxis_title='هفته',
|
640 |
+
yaxis_title='ارتفاع (سانتیمتر)',
|
641 |
+
font=dict(family='Vazirmatn', size=14),
|
642 |
+
hovermode='x unified',
|
643 |
+
template='plotly_white',
|
644 |
+
height=500
|
645 |
+
)
|
646 |
+
st.plotly_chart(fig, use_container_width=True)
|
647 |
+
else:
|
648 |
+
st.warning("دادهای برای نمایش وجود ندارد.")
|
649 |
+
|
650 |
+
with tab4:
|
651 |
+
st.markdown("### دادههای مزارع")
|
652 |
+
|
653 |
+
search_term = st.text_input("جستجو در دادهها", placeholder="نام مزرعه، واریته، سن و...")
|
654 |
+
|
655 |
+
if search_term:
|
656 |
+
filtered_df = farm_df[
|
657 |
+
farm_df['مزرعه'].astype(str).str.contains(search_term) |
|
658 |
+
farm_df['رقم'].astype(str).str.contains(search_term) |
|
659 |
+
farm_df['سن'].astype(str).str.contains(search_term) |
|
660 |
+
farm_df['کانال'].astype(str).str.contains(search_term)
|
661 |
+
]
|
662 |
+
else:
|
663 |
+
filtered_df = farm_df
|
664 |
+
|
665 |
+
if not filtered_df.empty:
|
666 |
+
csv = filtered_df.to_csv(index=False).encode('utf-8-sig')
|
667 |
+
st.download_button(
|
668 |
+
label="دانلود دادهها (CSV)",
|
669 |
+
data=csv,
|
670 |
+
file_name="farm_data.csv",
|
671 |
+
mime="text/csv",
|
672 |
)
|
673 |
+
st.dataframe(
|
674 |
+
filtered_df,
|
675 |
+
use_container_width=True,
|
676 |
+
height=400,
|
677 |
+
hide_index=True
|
|
|
|
|
|
|
|
|
|
|
|
|
678 |
)
|
679 |
+
st.info(f"نمایش {len(filtered_df)} مزرعه از {len(farm_df)} مزرعه")
|
|
|
680 |
else:
|
681 |
+
st.warning("هیچ دادهای یافت نشد.")
|
682 |
+
|
683 |
+
# صفحه نقشه مزارع
|
684 |
+
elif selected == "نقشه مزارع":
|
685 |
+
st.markdown("## نقشه مزارع با شاخصهای ماهوارهای")
|
686 |
|
687 |
+
col1, col2 = st.columns([1, 3])
|
688 |
+
|
689 |
+
with col1:
|
690 |
+
st.markdown('<div class="glass-card">', unsafe_allow_html=True)
|
691 |
+
st.markdown("### تنظیمات نقشه")
|
692 |
|
693 |
+
selected_farm = st.selectbox(
|
694 |
+
"انتخاب مزرعه",
|
695 |
+
options=coordinates_df['مزرعه'].tolist(),
|
696 |
+
index=0,
|
697 |
+
format_func=lambda x: f"مزرعه {x}"
|
698 |
+
)
|
699 |
|
700 |
+
selected_date = st.date_input(
|
701 |
+
"انتخاب تاریخ",
|
702 |
+
value=datetime.now(),
|
703 |
+
format="YYYY-MM-DD"
|
704 |
+
)
|
705 |
+
|
706 |
+
selected_layer = st.selectbox(
|
707 |
+
"انتخاب شاخص",
|
708 |
+
options=["NDVI", "NDMI", "EVI", "NDWI"],
|
709 |
+
format_func=lambda x: {
|
710 |
+
"NDVI": "شاخص پوشش گیاهی (NDVI)",
|
711 |
+
"NDMI": "شاخص رطوبت (NDMI)",
|
712 |
+
"EVI": "شاخص پیشرفته گیاهی (EVI)",
|
713 |
+
"NDWI": "شاخص آب (NDWI)"
|
714 |
+
}[x]
|
715 |
+
)
|
716 |
+
|
717 |
+
generate_map = st.button(
|
718 |
+
"تولید نقشه",
|
719 |
+
use_container_width=True
|
720 |
+
)
|
721 |
+
|
722 |
+
st.markdown('<hr style="margin: 20px 0;">', unsafe_allow_html=True)
|
723 |
+
|
724 |
+
st.markdown("### راهنمای شاخصها")
|
725 |
+
|
726 |
+
with st.expander("شاخص پوشش گیاهی (NDVI)", expanded=selected_layer == "NDVI"):
|
727 |
+
st.markdown("""
|
728 |
+
**شاخص تفاضل نرمالشده پوشش گیاهی (NDVI)** معیاری برای سنجش سلامت و تراکم پوشش گیاهی است.
|
729 |
+
|
730 |
+
- **مقادیر بالا (0.6 تا 1.0)**: پوشش گیاهی متراکم و سالم
|
731 |
+
- **مقادیر متوسط (0.2 تا 0.6)**: پوشش گیاهی متوسط
|
732 |
+
- **مقادیر پایین (-1.0 تا 0.2)**: پوشش گیاهی کم یا خاک لخت
|
733 |
+
|
734 |
+
فرمول: NDVI = (NIR - RED) / (NIR + RED)
|
735 |
+
""")
|
736 |
+
|
737 |
+
with st.expander("شاخص رطوبت (NDMI)", expanded=selected_layer == "NDMI"):
|
738 |
+
st.markdown("""
|
739 |
+
**شاخص تفاضل نرمالشده رطوبت (NDMI)** برای ارزیابی محتوای رطوبت گیاهان استفاده میشود.
|
740 |
+
|
741 |
+
- **مقادیر بالا (0.4 تا 1.0)**: محتوای رطوبت بالا
|
742 |
+
- **مقادیر متوسط (0.0 تا 0.4)**: محتوای رطوبت متوسط
|
743 |
+
- **مقادیر پایین (-1.0 تا 0.0)**: محتوای رطوبت کم
|
744 |
+
|
745 |
+
فرمول: NDMI = (NIR - SWIR) / (NIR + SWIR)
|
746 |
+
""")
|
747 |
+
|
748 |
+
with st.expander("شاخص پیشرفته گیاهی (EVI)", expanded=selected_layer == "EVI"):
|
749 |
+
st.markdown("""
|
750 |
+
**شاخص پیشرفته پوشش گیاهی (EVI)** نسخه بهبودیافته NDVI است که حساسیت کمتری به اثرات خاک و اتمسفر دارد.
|
751 |
+
|
752 |
+
- **مقادیر بالا (0.4 تا 1.0)**: پوشش گیاهی متراکم و سالم
|
753 |
+
- **مقادیر متوسط (0.2 تا 0.4)**: پوشش گیاهی متوسط
|
754 |
+
- **مقادیر پایین (0.0 تا 0.2)**: پوشش گیاهی کم
|
755 |
+
|
756 |
+
فرمول: EVI = 2.5 * ((NIR - RED) / (NIR + 6*RED - 7.5*BLUE + 1))
|
757 |
+
""")
|
758 |
+
|
759 |
+
with st.expander("شاخص آب (NDWI)", expanded=selected_layer == "NDWI"):
|
760 |
+
st.markdown("""
|
761 |
+
**شاخص تفاضل نرمالشده آب (NDWI)** برای شناسایی پهنههای آبی و ارزیابی محتوای آب در گیاهان استفاده میشود.
|
762 |
|
763 |
+
- **مقادیر بالا (0.3 تا 1.0)**: پهنههای آبی
|
764 |
+
- **مقادیر متوسط (0.0 تا 0.3)**: محتوای آب متوسط
|
765 |
+
- **مقادیر پایین (-1.0 تا 0.0)**: محتوای آب کم یا خاک خشک
|
766 |
+
|
767 |
+
فرمول: NDWI = (GREEN - NIR) / (GREEN + NIR)
|
768 |
+
""")
|
769 |
+
|
770 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
771 |
+
|
772 |
+
with col2:
|
773 |
+
map_tab, stats_tab = st.tabs(["نقشه", "آمار و تحلیل"])
|
774 |
+
|
775 |
+
with map_tab:
|
776 |
+
st.markdown('<div class="map-container">', unsafe_allow_html=True)
|
777 |
+
if generate_map or 'last_map' not in st.session_state:
|
778 |
+
with st.spinner('در حال تولید نقشه...'):
|
779 |
+
m = create_ee_map(
|
780 |
+
selected_farm,
|
781 |
+
selected_date.strftime('%Y-%m-%d'),
|
782 |
+
selected_layer
|
783 |
+
)
|
784 |
+
if m:
|
785 |
+
st.session_state.last_map = m
|
786 |
+
folium_static(m, width=800, height=600)
|
787 |
+
st.success(f"نقشه {selected_layer} برای مزرعه {selected_farm} با موفقیت تولید شد.")
|
788 |
+
else:
|
789 |
+
st.error("خطا در تولید نقشه. لطفاً دوباره تلاش کنید.")
|
790 |
+
elif 'last_map' in st.session_state:
|
791 |
+
folium_static(st.session_state.last_map, width=800, height=600)
|
792 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
793 |
+
st.info("""
|
794 |
+
**نکته:** این نقشه بر اساس تصاویر ماهوارهای Sentinel-2 تولید شده است.
|
795 |
+
برای دقت بیشتر، تاریخی را انتخاب کنید که ابرناکی کمتری داشته باشد.
|
796 |
+
""")
|
797 |
+
|
798 |
+
with stats_tab:
|
799 |
+
if 'last_map' in st.session_state:
|
800 |
+
stats = calculate_farm_stats(selected_farm, selected_layer)
|
801 |
|
802 |
col1, col2, col3, col4 = st.columns(4)
|
803 |
|
804 |
with col1:
|
805 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
806 |
+
st.markdown(f'<div class="metric-value">{stats["mean"]:.2f}</div>', unsafe_allow_html=True)
|
807 |
+
st.markdown(f'<div class="metric-label">میانگین {selected_layer}</div>', unsafe_allow_html=True)
|
808 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
809 |
|
810 |
with col2:
|
811 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
812 |
+
st.markdown(f'<div class="metric-value">{stats["max"]:.2f}</div>', unsafe_allow_html=True)
|
813 |
+
st.markdown(f'<div class="metric-label">حداکثر {selected_layer}</div>', unsafe_allow_html=True)
|
814 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
815 |
|
816 |
with col3:
|
817 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
818 |
+
st.markdown(f'<div class="metric-value">{stats["min"]:.2f}</div>', unsafe_allow_html=True)
|
819 |
+
st.markdown(f'<div class="metric-label">حداقل {selected_layer}</div>', unsafe_allow_html=True)
|
820 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
821 |
|
822 |
with col4:
|
823 |
+
st.markdown('<div class="metric-card">', unsafe_allow_html=True)
|
824 |
+
st.markdown(f'<div class="metric-value">{stats["std_dev"]:.2f}</div>', unsafe_allow_html=True)
|
825 |
+
st.markdown(f'<div class="metric-label">انحراف معیار</div>', unsafe_allow_html=True)
|
826 |
+
st.markdown('</div>', unsafe_allow_html=True)
|
827 |
|
828 |
+
fig = px.histogram(
|
829 |
+
x=stats["histogram_data"],
|
830 |
+
nbins=20,
|
831 |
+
title=f"توزیع مقادیر {selected_layer} در مزرعه {selected_farm}",
|
832 |
+
labels={"x": f"مقدار {selected_layer}", "y": "فراوانی"},
|
833 |
+
color_discrete_sequence=["#1a8754"]
|
834 |
+
)
|
835 |
+
fig.update_layout(
|
836 |
+
font=dict(family="Vazirmatn"),
|
837 |
+
template="plotly_white",
|
838 |
+
bargap=0.1
|
839 |
+
)
|
840 |
+
st.plotly_chart(fig, use_container_width=True)
|
841 |
|
842 |
+
dates = pd.date_range(end=selected_date, periods=30, freq='D')
|
843 |
+
values = [stats["mean"] + np.random.normal(0, stats["std_dev"] / 2) for _ in range(30)]
|
844 |
+
values = np.clip(values, stats["min"], stats["max"])
|
|
|
|
|
|
|
845 |
|
846 |
+
fig = px.line(
|
847 |
+
x=dates,
|
848 |
+
y=values,
|
849 |
+
title=f"روند تغییرات {selected_layer} در 30 روز گذشته",
|
850 |
+
labels={"x": "تاریخ", "y": f"مقدار {selected_layer}"},
|
851 |
+
markers=True
|
852 |
+
)
|
853 |
fig.update_layout(
|
854 |
+
font=dict(family="Vazirmatn"),
|
855 |
+
template="plotly_white",
|
856 |
+
hovermode="x unified"
|
|
|
857 |
)
|
|
|
858 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
859 |
else:
|
860 |
+
st.warning("لطفاً ابتدا یک نقشه تولید کنید.")
|
|
|
|
|
861 |
|
862 |
+
# فوتر
|
863 |
+
st.markdown("""
|
864 |
+
<footer>
|
865 |
+
<p>© 2025 سامانه هوشمند پایش مزارع نیشکر دهخدا. تمامی حقوق محفوظ است.</p>
|
866 |
+
</footer>
|
867 |
+
""", unsafe_allow_html=True)
|