File size: 2,953 Bytes
95fc527
416991a
20712aa
4d93fa1
25b797a
20712aa
25b797a
 
 
c43a80c
8aec507
53fd703
604a2b6
 
 
 
 
95fc527
416991a
 
 
 
 
20712aa
 
4d93fa1
09a08ee
416991a
1294d13
416991a
 
604a2b6
 
 
 
 
416991a
 
 
 
604a2b6
 
416991a
 
 
1294d13
4d93fa1
416991a
604a2b6
 
 
 
 
 
416991a
 
20712aa
 
 
 
 
b147674
 
 
 
 
25b797a
416991a
b147674
25b797a
1294d13
b147674
20712aa
 
 
 
 
b147674
 
416991a
 
 
604a2b6
b147674
4d93fa1
 
 
604a2b6
b147674
 
 
25b797a
 
416991a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import os
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer
from langdetect import detect, DetectorFactory

# Ensure consistent language detection results
DetectorFactory.seed = 0

# Set Hugging Face cache directory to a writable location
os.environ["HF_HOME"] = "/tmp/huggingface"
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"

# Create cache directory with proper permissions
cache_dir = os.environ["HF_HOME"]
os.makedirs(cache_dir, exist_ok=True)
os.chmod(cache_dir, 0o755)  # Set read/write/execute permissions for owner

# Retrieve Hugging Face token from environment variable
HF_TOKEN = os.getenv("HF_TOKEN")
if not HF_TOKEN:
    raise RuntimeError("Hugging Face token is missing! Please set the HF_TOKEN environment variable.")

app = FastAPI()

# Model names
MULTILINGUAL_MODEL_NAME = "Ehrii/sentiment"
ENGLISH_MODEL_NAME = "siebert/sentiment-roberta-large-english"

# Load multilingual sentiment model
try:
    multilingual_tokenizer = AutoTokenizer.from_pretrained(
        MULTILINGUAL_MODEL_NAME,
        token=HF_TOKEN,  # Use 'token' instead of deprecated 'use_auth_token'
        cache_dir=cache_dir
    )
    multilingual_model = pipeline(
        "sentiment-analysis",
        model=MULTILINGUAL_MODEL_NAME,
        tokenizer=multilingual_tokenizer,
        token=HF_TOKEN,  # Use 'token' instead of deprecated 'use_auth_token'
        cache_dir=cache_dir
    )
except Exception as e:
    raise RuntimeError(f"Failed to load multilingual model: {e}")

# Load English sentiment model
try:
    english_model = pipeline(
        "sentiment-analysis",
        model=ENGLISH_MODEL_NAME,
        token=HF_TOKEN,  # Use 'token' instead of deprecated 'use_auth_token'
        cache_dir=cache_dir
    )
except Exception as e:
    raise RuntimeError(f"Failed to load English sentiment model: {e}")

class SentimentRequest(BaseModel):
    text: str

class SentimentResponse(BaseModel):
    original_text: str
    language_detected: str
    sentiment: str
    confidence_score: float

def detect_language(text):
    """Detect the language of the given text."""
    try:
        return detect(text)
    except Exception:
        return "unknown"

@app.get("/")
def home():
    return {"message": "Sentiment Analysis API is running!"}

@app.post("/analyze/", response_model=SentimentResponse)
def analyze_sentiment(request: SentimentRequest):
    text = request.text.strip()
    if not text:
        raise HTTPException(status_code=400, detail="Text input cannot be empty.")
    
    language = detect_language(text)
    # Choose the appropriate model based on detected language
    model = english_model if language == "en" else multilingual_model
    result = model(text)
    
    return SentimentResponse(
        original_text=text,
        language_detected=language,
        sentiment=result[0]["label"].lower(),
        confidence_score=result[0]["score"],
    )