Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
from fastapi import FastAPI
|
3 |
from pydantic import BaseModel
|
4 |
-
from transformers import pipeline, AutoTokenizer
|
5 |
from langdetect import detect, DetectorFactory
|
6 |
|
7 |
# Ensure consistent language detection results
|
@@ -14,19 +14,20 @@ os.makedirs(os.environ["HF_HOME"], exist_ok=True)
|
|
14 |
|
15 |
app = FastAPI()
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
|
21 |
-
# Load
|
|
|
22 |
multilingual_model = pipeline(
|
23 |
"sentiment-analysis",
|
24 |
-
model=
|
25 |
-
tokenizer=
|
26 |
)
|
27 |
|
28 |
-
# Load
|
29 |
-
english_model = pipeline("sentiment-analysis", model=
|
30 |
|
31 |
class SentimentRequest(BaseModel):
|
32 |
text: str
|
@@ -52,11 +53,9 @@ def analyze_sentiment(request: SentimentRequest):
|
|
52 |
text = request.text
|
53 |
language = detect_language(text)
|
54 |
|
55 |
-
# Choose the appropriate model based on language
|
56 |
-
if language == "en"
|
57 |
-
|
58 |
-
else:
|
59 |
-
result = multilingual_model(text)
|
60 |
|
61 |
return SentimentResponse(
|
62 |
original_text=text,
|
|
|
1 |
import os
|
2 |
from fastapi import FastAPI
|
3 |
from pydantic import BaseModel
|
4 |
+
from transformers import pipeline, AutoTokenizer
|
5 |
from langdetect import detect, DetectorFactory
|
6 |
|
7 |
# Ensure consistent language detection results
|
|
|
14 |
|
15 |
app = FastAPI()
|
16 |
|
17 |
+
# Model names
|
18 |
+
multilingual_model_name = "johndoee/sentiment"
|
19 |
+
english_model_name = "siebert/sentiment-roberta-large-english"
|
20 |
|
21 |
+
# Load tokenizer and model for multilingual sentiment analysis
|
22 |
+
multilingual_tokenizer = AutoTokenizer.from_pretrained(multilingual_model_name)
|
23 |
multilingual_model = pipeline(
|
24 |
"sentiment-analysis",
|
25 |
+
model=multilingual_model_name,
|
26 |
+
tokenizer=multilingual_tokenizer
|
27 |
)
|
28 |
|
29 |
+
# Load English sentiment model
|
30 |
+
english_model = pipeline("sentiment-analysis", model=english_model_name)
|
31 |
|
32 |
class SentimentRequest(BaseModel):
|
33 |
text: str
|
|
|
53 |
text = request.text
|
54 |
language = detect_language(text)
|
55 |
|
56 |
+
# Choose the appropriate model based on detected language
|
57 |
+
model = english_model if language == "en" else multilingual_model
|
58 |
+
result = model(text)
|
|
|
|
|
59 |
|
60 |
return SentimentResponse(
|
61 |
original_text=text,
|