Spaces:
Running
Running
Update main.py
Browse files
main.py
CHANGED
@@ -10,11 +10,14 @@ DetectorFactory.seed = 0
|
|
10 |
# Set Hugging Face cache directory to a writable location
|
11 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
12 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
13 |
-
|
|
|
|
|
|
|
|
|
14 |
|
15 |
# Retrieve Hugging Face token from environment variable
|
16 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
17 |
-
|
18 |
if not HF_TOKEN:
|
19 |
raise RuntimeError("Hugging Face token is missing! Please set the HF_TOKEN environment variable.")
|
20 |
|
@@ -26,19 +29,29 @@ ENGLISH_MODEL_NAME = "siebert/sentiment-roberta-large-english"
|
|
26 |
|
27 |
# Load multilingual sentiment model
|
28 |
try:
|
29 |
-
multilingual_tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
30 |
multilingual_model = pipeline(
|
31 |
"sentiment-analysis",
|
32 |
model=MULTILINGUAL_MODEL_NAME,
|
33 |
tokenizer=multilingual_tokenizer,
|
34 |
-
|
|
|
35 |
)
|
36 |
except Exception as e:
|
37 |
raise RuntimeError(f"Failed to load multilingual model: {e}")
|
38 |
|
39 |
# Load English sentiment model
|
40 |
try:
|
41 |
-
english_model = pipeline(
|
|
|
|
|
|
|
|
|
|
|
42 |
except Exception as e:
|
43 |
raise RuntimeError(f"Failed to load English sentiment model: {e}")
|
44 |
|
@@ -65,16 +78,14 @@ def home():
|
|
65 |
@app.post("/analyze/", response_model=SentimentResponse)
|
66 |
def analyze_sentiment(request: SentimentRequest):
|
67 |
text = request.text.strip()
|
68 |
-
|
69 |
if not text:
|
70 |
raise HTTPException(status_code=400, detail="Text input cannot be empty.")
|
71 |
-
|
72 |
language = detect_language(text)
|
73 |
-
|
74 |
# Choose the appropriate model based on detected language
|
75 |
model = english_model if language == "en" else multilingual_model
|
76 |
result = model(text)
|
77 |
-
|
78 |
return SentimentResponse(
|
79 |
original_text=text,
|
80 |
language_detected=language,
|
|
|
10 |
# Set Hugging Face cache directory to a writable location
|
11 |
os.environ["HF_HOME"] = "/tmp/huggingface"
|
12 |
os.environ["TRANSFORMERS_CACHE"] = "/tmp/huggingface"
|
13 |
+
|
14 |
+
# Create cache directory with proper permissions
|
15 |
+
cache_dir = os.environ["HF_HOME"]
|
16 |
+
os.makedirs(cache_dir, exist_ok=True)
|
17 |
+
os.chmod(cache_dir, 0o755) # Set read/write/execute permissions for owner
|
18 |
|
19 |
# Retrieve Hugging Face token from environment variable
|
20 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
21 |
if not HF_TOKEN:
|
22 |
raise RuntimeError("Hugging Face token is missing! Please set the HF_TOKEN environment variable.")
|
23 |
|
|
|
29 |
|
30 |
# Load multilingual sentiment model
|
31 |
try:
|
32 |
+
multilingual_tokenizer = AutoTokenizer.from_pretrained(
|
33 |
+
MULTILINGUAL_MODEL_NAME,
|
34 |
+
token=HF_TOKEN, # Use 'token' instead of deprecated 'use_auth_token'
|
35 |
+
cache_dir=cache_dir
|
36 |
+
)
|
37 |
multilingual_model = pipeline(
|
38 |
"sentiment-analysis",
|
39 |
model=MULTILINGUAL_MODEL_NAME,
|
40 |
tokenizer=multilingual_tokenizer,
|
41 |
+
token=HF_TOKEN, # Use 'token' instead of deprecated 'use_auth_token'
|
42 |
+
cache_dir=cache_dir
|
43 |
)
|
44 |
except Exception as e:
|
45 |
raise RuntimeError(f"Failed to load multilingual model: {e}")
|
46 |
|
47 |
# Load English sentiment model
|
48 |
try:
|
49 |
+
english_model = pipeline(
|
50 |
+
"sentiment-analysis",
|
51 |
+
model=ENGLISH_MODEL_NAME,
|
52 |
+
token=HF_TOKEN, # Use 'token' instead of deprecated 'use_auth_token'
|
53 |
+
cache_dir=cache_dir
|
54 |
+
)
|
55 |
except Exception as e:
|
56 |
raise RuntimeError(f"Failed to load English sentiment model: {e}")
|
57 |
|
|
|
78 |
@app.post("/analyze/", response_model=SentimentResponse)
|
79 |
def analyze_sentiment(request: SentimentRequest):
|
80 |
text = request.text.strip()
|
|
|
81 |
if not text:
|
82 |
raise HTTPException(status_code=400, detail="Text input cannot be empty.")
|
83 |
+
|
84 |
language = detect_language(text)
|
|
|
85 |
# Choose the appropriate model based on detected language
|
86 |
model = english_model if language == "en" else multilingual_model
|
87 |
result = model(text)
|
88 |
+
|
89 |
return SentimentResponse(
|
90 |
original_text=text,
|
91 |
language_detected=language,
|