Durganihantri's picture
Update README.md
3ac4f74 verified
---
title: MicroAggression Tool
emoji: πŸ“š
colorFrom: pink
colorTo: indigo
sdk: streamlit
sdk_version: 1.42.0
app_file: app.py
pinned: false
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
MicroAggression Insight Tool
πŸ“Œ An AI-powered tool for analyzing, categorizing, and visualizing microaggressions based on sentiment and NLP processing.
πŸ” Project Overview
The MicroAggression Insight Tool is a research-driven web app that:
βœ… Collects user-reported microaggression experiences
βœ… Analyzes sentiment polarity (negative, neutral, positive)
βœ… Categorizes microaggressions into: Microinvalidation, Microinsult, Microassault
βœ… Visualizes trends using bar charts & word clouds
βœ… Supports social psychology & intergroup relations research
This project aligns with social psychology research on discrimination perception and consequences, specifically for microaggressions in different social contexts.
🎯 How to Use the App
1️⃣ Enter a statement (e.g., β€œYou’re so articulate for someone like you”)
2️⃣ Click Analyze
3️⃣ The app will:
β€’ Categorize the statement into Microinvalidation, Microinsult, or Microassault
β€’ Analyze Sentiment (-1 = Negative, 0 = Neutral, +1 = Positive)
β€’ Visualize common patterns across all collected data
πŸ”— Live App: Check it out on Hugging Face Spaces
πŸ–₯️ Installation & Running Locally
πŸ”§ If you want to run this app on your local machine, follow these steps:
1. Clone the Repository
git clone https://github.com/durganihantri/MicroAggression-Insight-Tool.git
cd MicroAggression-Insight-Tool
2. Create a Virtual Environment (Optional)
python -m venv venv
source venv/bin/activate # On Mac/Linux
venv\Scripts\activate # On Windows
3. Install Dependencies
pip install -r requirements.txt
4. Run the Streamlit App
streamlit run app.py
βœ… The app will launch in your browser at http://localhost:8501.
πŸš€ Deployment on Hugging Face Spaces
If you want to deploy this app on Hugging Face Spaces, follow these steps:
1️⃣ Go to Hugging Face Spaces
2️⃣ Click β€œCreate new Space”
3️⃣ Set SDK to Streamlit
4️⃣ Upload these files:
β€’ app.py (Main Streamlit app)
β€’ requirements.txt (Dependencies)
5️⃣ Click β€œCommit” and wait for the app to deploy.
πŸ”— Live App URL: Your Hugging Face Spaces Link
πŸ› οΈ Technical Details
β€’ Framework: Streamlit
β€’ Backend: Python (NLTK, TextBlob for NLP processing)
β€’ Data Storage: CSV-based (for collecting user input)
β€’ Visualization: Matplotlib, WordCloud
β€’ Modeling Techniques:
β€’ Sentiment Analysis via TextBlob
β€’ Categorization via basic NLP keyword matching
πŸ“Œ Features & Future Enhancements
βœ… Current Features
βœ”οΈ Microaggression categorization (Microinvalidation, Microinsult, Microassault)
βœ”οΈ Sentiment analysis for emotional impact
βœ”οΈ Bar chart & word cloud visualizations
βœ”οΈ User-reported microaggressions database
πŸ”₯ Planned Enhancements
πŸš€ Improve NLP classification (use GPT-based models for better accuracy)
πŸš€ Add multilingual support (expand analysis to other languages)
πŸš€ Integrate advanced analytics (e.g., time trends, deeper sentiment shifts)
πŸš€ Export reports for researchers (downloadable CSV files)
πŸ§‘β€πŸ’» Author & Contact
πŸ‘€ Developed by: Durganihantri
πŸ’‘ For inquiries, research collaboration, or feedback:
πŸ“§ Email: [email protected]
πŸ”— LinkedIn: http://linkedin.com/in/durganihantri
⭐ Contribute & Support
If you find this project useful, please consider starring the repo ⭐ and contributing!
πŸ“Œ To contribute:
β€’ Fork this repository
β€’ Make improvements
β€’ Submit a Pull Request!