Spaces:
Sleeping
Sleeping
File size: 3,716 Bytes
1f81d73 3ac4f74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
title: MicroAggression Tool
emoji: π
colorFrom: pink
colorTo: indigo
sdk: streamlit
sdk_version: 1.42.0
app_file: app.py
pinned: false
---
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
MicroAggression Insight Tool
π An AI-powered tool for analyzing, categorizing, and visualizing microaggressions based on sentiment and NLP processing.
π Project Overview
The MicroAggression Insight Tool is a research-driven web app that:
β
Collects user-reported microaggression experiences
β
Analyzes sentiment polarity (negative, neutral, positive)
β
Categorizes microaggressions into: Microinvalidation, Microinsult, Microassault
β
Visualizes trends using bar charts & word clouds
β
Supports social psychology & intergroup relations research
This project aligns with social psychology research on discrimination perception and consequences, specifically for microaggressions in different social contexts.
π― How to Use the App
1οΈβ£ Enter a statement (e.g., βYouβre so articulate for someone like youβ)
2οΈβ£ Click Analyze
3οΈβ£ The app will:
β’ Categorize the statement into Microinvalidation, Microinsult, or Microassault
β’ Analyze Sentiment (-1 = Negative, 0 = Neutral, +1 = Positive)
β’ Visualize common patterns across all collected data
π Live App: Check it out on Hugging Face Spaces
π₯οΈ Installation & Running Locally
π§ If you want to run this app on your local machine, follow these steps:
1. Clone the Repository
git clone https://github.com/durganihantri/MicroAggression-Insight-Tool.git
cd MicroAggression-Insight-Tool
2. Create a Virtual Environment (Optional)
python -m venv venv
source venv/bin/activate # On Mac/Linux
venv\Scripts\activate # On Windows
3. Install Dependencies
pip install -r requirements.txt
4. Run the Streamlit App
streamlit run app.py
β
The app will launch in your browser at http://localhost:8501.
π Deployment on Hugging Face Spaces
If you want to deploy this app on Hugging Face Spaces, follow these steps:
1οΈβ£ Go to Hugging Face Spaces
2οΈβ£ Click βCreate new Spaceβ
3οΈβ£ Set SDK to Streamlit
4οΈβ£ Upload these files:
β’ app.py (Main Streamlit app)
β’ requirements.txt (Dependencies)
5οΈβ£ Click βCommitβ and wait for the app to deploy.
π Live App URL: Your Hugging Face Spaces Link
π οΈ Technical Details
β’ Framework: Streamlit
β’ Backend: Python (NLTK, TextBlob for NLP processing)
β’ Data Storage: CSV-based (for collecting user input)
β’ Visualization: Matplotlib, WordCloud
β’ Modeling Techniques:
β’ Sentiment Analysis via TextBlob
β’ Categorization via basic NLP keyword matching
π Features & Future Enhancements
β
Current Features
βοΈ Microaggression categorization (Microinvalidation, Microinsult, Microassault)
βοΈ Sentiment analysis for emotional impact
βοΈ Bar chart & word cloud visualizations
βοΈ User-reported microaggressions database
π₯ Planned Enhancements
π Improve NLP classification (use GPT-based models for better accuracy)
π Add multilingual support (expand analysis to other languages)
π Integrate advanced analytics (e.g., time trends, deeper sentiment shifts)
π Export reports for researchers (downloadable CSV files)
π§βπ» Author & Contact
π€ Developed by: Durganihantri
π‘ For inquiries, research collaboration, or feedback:
π§ Email: [email protected]
π LinkedIn: http://linkedin.com/in/durganihantri
β Contribute & Support
If you find this project useful, please consider starring the repo β and contributing!
π To contribute:
β’ Fork this repository
β’ Make improvements
β’ Submit a Pull Request! |