File size: 6,328 Bytes
aa31b3b
e37ff79
aa31b3b
1f85d80
bca3677
8858519
 
aa31b3b
 
 
 
eb428fa
51225e7
aa31b3b
 
 
 
8858519
 
b604a12
9476a94
 
 
3371395
 
 
70183ac
b604a12
726122d
bca3677
 
a620e89
 
 
 
 
 
726122d
afad2ef
726122d
 
 
 
f172bb5
afad2ef
a620e89
f172bb5
d38433c
b604a12
 
bca3677
 
44e6288
bca3677
a620e89
 
b604a12
 
2320d6a
eb428fa
5a1233f
 
 
 
bca3677
 
44e6288
a620e89
 
 
bca3677
5a1233f
 
bca3677
bba0424
 
a620e89
eb428fa
bca3677
 
af1d856
a620e89
eb428fa
44e6288
 
726122d
eb428fa
a620e89
 
 
 
 
eb428fa
 
a620e89
 
 
eb428fa
a620e89
eb428fa
 
 
a620e89
 
 
726122d
afad2ef
a620e89
 
 
bca3677
eb428fa
a620e89
 
eb428fa
 
af1d856
eb428fa
afad2ef
af1d856
44e6288
af1d856
 
 
 
 
 
 
726122d
3c4e62e
44e6288
af1d856
726122d
3c4e62e
af1d856
eb428fa
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import os
import chromadb
import requests
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from langchain.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from prompts import rag_prompt

# Set API Keys
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")

llm_judge.verbose = True
rag_llm.verbose = True

# Clear ChromaDB cache to fix tenant issue
chromadb.api.client.SharedSystemClient.clear_system_cache()

st.title("Blah")

# **Initialize session state variables**
if "pdf_path" not in st.session_state:
    st.session_state.pdf_path = None  
if "pdf_loaded" not in st.session_state:
    st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
    st.session_state.chunked = False
if "vector_created" not in st.session_state:
    st.session_state.vector_created = False
if "vector_store_path" not in st.session_state:
    st.session_state.vector_store_path = "./chroma_langchain_db"
if "vector_store" not in st.session_state:
    st.session_state.vector_store = None
if "documents" not in st.session_state:
    st.session_state.documents = None

# Step 1: Choose PDF Source
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)

if pdf_source == "Upload a PDF file":
    uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
    if uploaded_file:
        st.session_state.pdf_path = "temp.pdf"
        with open(st.session_state.pdf_path, "wb") as f:
            f.write(uploaded_file.getbuffer())
        st.session_state.pdf_loaded = False
        st.session_state.chunked = False
        st.session_state.vector_created = False

elif pdf_source == "Enter a PDF URL":
    pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998")
    if pdf_url and not st.session_state.get("pdf_loaded", False):
        with st.spinner("Downloading PDF..."):
            try:
                response = requests.get(pdf_url)
                if response.status_code == 200:
                    st.session_state.pdf_path = "temp.pdf"
                    with open(st.session_state.pdf_path, "wb") as f:
                        f.write(response.content)
                    st.session_state.pdf_loaded = False
                    st.session_state.chunked = False
                    st.session_state.vector_created = False
                    st.success("βœ… PDF Downloaded Successfully!")
                else:
                    st.error("❌ Failed to download PDF. Check the URL.")
            except Exception as e:
                st.error(f"Error downloading PDF: {e}")

# Step 2: Process PDF
if st.session_state.pdf_path and not st.session_state.get("pdf_loaded", False):
    with st.spinner("Loading and processing PDF..."):
        loader = PDFPlumberLoader(st.session_state.pdf_path)
        docs = loader.load()
        st.session_state.documents = docs
        st.session_state.pdf_loaded = True  # βœ… Prevent re-loading
        st.success(f"βœ… **PDF Loaded!** Total Pages: {len(docs)}")

# Step 3: Chunking
if st.session_state.get("pdf_loaded", False) and not st.session_state.get("chunked", False):
    with st.spinner("Chunking the document..."):
        model_name = "nomic-ai/modernbert-embed-base"
        embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
        text_splitter = SemanticChunker(embedding_model)
        documents = text_splitter.split_documents(st.session_state.documents)
        st.session_state.documents = documents  # βœ… Store chunked docs
        st.session_state.chunked = True  # βœ… Prevent re-chunking
        st.success(f"βœ… **Document Chunked!** Total Chunks: {len(documents)}")

# Step 4: Setup Vectorstore
if st.session_state.get("chunked", False) and not st.session_state.get("vector_created", False):
    with st.spinner("Creating vector store..."):
        model_name = "nomic-ai/modernbert-embed-base"
        embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})

        vector_store = Chroma(
            collection_name="deepseek_collection",
            collection_metadata={"hnsw:space": "cosine"},
            embedding_function=embedding_model,
            persist_directory=st.session_state.vector_store_path
        )
        vector_store.add_documents(st.session_state.documents)
        num_documents = len(vector_store.get()["documents"])
        st.session_state.vector_store = vector_store
        st.session_state.vector_created = True  # βœ… Prevent re-creating vector store
        st.success(f"βœ… **Vector Store Created!** Total documents stored: {num_documents}")

# Step 5: Query Input (this should not trigger previous steps!)
if st.session_state.get("vector_created", False) and st.session_state.get("vector_store", None):
    query = st.text_input("πŸ” Enter a Query:")

    if query:
        with st.spinner("Retrieving relevant contexts..."):
            retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
            contexts = retriever.invoke(query)
            context_texts = [doc.page_content for doc in contexts]

        st.success(f"βœ… **Retrieved {len(context_texts)} Contexts!**")
        for i, text in enumerate(context_texts, 1):
            st.write(f"**Context {i}:** {text[:500]}...")

        # **Step 6: Generate Final Response**
        with st.spinner("Generating the final answer..."):
            final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
            response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
            final_response = response_chain.invoke({"query": query, "context": context_texts})

        st.subheader("πŸŸ₯ RAG Final Response")
        st.success(final_response['final_response'])