Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -56,138 +56,92 @@ else:
|
|
56 |
pdf_path = None
|
57 |
|
58 |
# Step 2: Process PDF
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
62 |
|
63 |
-
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
64 |
-
|
65 |
-
# Step 3: Chunking
|
66 |
-
with st.spinner("Chunking the document..."):
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
73 |
-
|
74 |
-
# Step 4: Setup Vectorstore
|
75 |
-
with st.spinner("Creating vector store..."):
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
query
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
-----------------
|
103 |
-
|
104 |
# Step 6: Context Relevancy Checker
|
105 |
with st.spinner("Evaluating context relevancy..."):
|
106 |
-
|
107 |
-
input_variables=["retriever_query", "context"],
|
108 |
-
template="""You are an expert judge. Assign relevancy scores (0 or 1) for each context to answer the query.
|
109 |
-
|
110 |
-
CONTEXT LIST:
|
111 |
-
{context}
|
112 |
-
|
113 |
-
QUERY:
|
114 |
-
{retriever_query}
|
115 |
-
|
116 |
-
RESPONSE (JSON):
|
117 |
-
[{{"content": 1, "score": <0 or 1>, "reasoning": "<explanation>"}},
|
118 |
-
{{"content": 2, "score": <0 or 1>, "reasoning": "<explanation>"}},
|
119 |
-
...]"""
|
120 |
)
|
121 |
-
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=
|
122 |
relevancy_response = context_relevancy_chain.invoke({"context": context_texts, "retriever_query": query})
|
123 |
|
124 |
-
st.
|
125 |
st.json(relevancy_response['relevancy_response'])
|
126 |
|
127 |
# Step 7: Selecting Relevant Contexts
|
128 |
with st.spinner("Selecting the most relevant contexts..."):
|
129 |
relevant_prompt = PromptTemplate(
|
130 |
-
input_variables=["relevancy_response"],
|
131 |
-
template="""Extract contexts with score 0 from the relevancy response.
|
132 |
-
|
133 |
-
RELEVANCY RESPONSE:
|
134 |
-
{relevancy_response}
|
135 |
-
|
136 |
-
RESPONSE (JSON):
|
137 |
-
[{{"content": <content number>}}]
|
138 |
-
"""
|
139 |
)
|
140 |
pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
|
141 |
relevant_response = pick_relevant_context_chain.invoke({"relevancy_response": relevancy_response['relevancy_response']})
|
142 |
|
143 |
-
st.
|
144 |
st.json(relevant_response['context_number'])
|
145 |
|
146 |
# Step 8: Retrieving Context for Response Generation
|
147 |
with st.spinner("Retrieving final context..."):
|
148 |
context_prompt = PromptTemplate(
|
149 |
-
input_variables=["context_number", "context"],
|
150 |
-
template="""Extract actual content for the selected context numbers.
|
151 |
-
|
152 |
-
CONTEXT NUMBERS:
|
153 |
-
{context_number}
|
154 |
-
|
155 |
-
CONTENT LIST:
|
156 |
-
{context}
|
157 |
-
|
158 |
-
RESPONSE (JSON):
|
159 |
-
[{{"context_number": <content number>, "relevant_content": "<actual context>"}}]
|
160 |
-
"""
|
161 |
)
|
162 |
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
|
163 |
final_contexts = relevant_contexts_chain.invoke({"context_number": relevant_response['context_number'], "context": context_texts})
|
164 |
|
165 |
-
st.
|
166 |
st.json(final_contexts['relevant_contexts'])
|
167 |
|
168 |
# Step 9: Generate Final Response
|
169 |
with st.spinner("Generating the final answer..."):
|
170 |
-
|
171 |
-
input_variables=["query", "context"],
|
172 |
-
template="""Generate a clear, fact-based response based on the context.
|
173 |
-
|
174 |
-
QUERY:
|
175 |
-
{query}
|
176 |
-
|
177 |
-
CONTEXT:
|
178 |
-
{context}
|
179 |
-
|
180 |
-
ANSWER:
|
181 |
-
"""
|
182 |
)
|
183 |
-
response_chain = LLMChain(llm=rag_llm, prompt=
|
184 |
final_response = response_chain.invoke({"query": query, "context": final_contexts['relevant_contexts']})
|
185 |
|
186 |
-
st.
|
187 |
st.success(final_response['final_response'])
|
188 |
|
189 |
# Step 10: Display Workflow Breakdown
|
190 |
-
st.
|
191 |
st.json({
|
192 |
"Context Relevancy Evaluation": relevancy_response["relevancy_response"],
|
193 |
"Relevant Contexts": relevant_response["context_number"],
|
|
|
56 |
pdf_path = None
|
57 |
|
58 |
# Step 2: Process PDF
|
59 |
+
if pdf_path:
|
60 |
+
with st.spinner("Loading PDF..."):
|
61 |
+
loader = PDFPlumberLoader(pdf_path)
|
62 |
+
docs = loader.load()
|
63 |
|
64 |
+
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
|
65 |
+
|
66 |
+
# Step 3: Chunking
|
67 |
+
with st.spinner("Chunking the document..."):
|
68 |
+
model_name = "nomic-ai/modernbert-embed-base"
|
69 |
+
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'})
|
70 |
+
text_splitter = SemanticChunker(embedding_model)
|
71 |
+
documents = text_splitter.split_documents(docs)
|
72 |
+
|
73 |
+
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
|
74 |
+
|
75 |
+
# Step 4: Setup Vectorstore
|
76 |
+
with st.spinner("Creating vector store..."):
|
77 |
+
vector_store = Chroma(
|
78 |
+
collection_name="deepseek_collection",
|
79 |
+
collection_metadata={"hnsw:space": "cosine"},
|
80 |
+
embedding_function=embedding_model
|
81 |
+
)
|
82 |
+
vector_store.add_documents(documents)
|
83 |
+
num_documents = len(vector_store.get()["documents"])
|
84 |
+
|
85 |
+
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
|
86 |
+
|
87 |
+
# Step 5: Query Input
|
88 |
+
query = st.text_input("π Enter a Query:")
|
89 |
+
if query:
|
90 |
+
with st.spinner("Retrieving relevant contexts..."):
|
91 |
+
retriever = vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
|
92 |
+
contexts = retriever.invoke(query)
|
93 |
+
context_texts = [doc.page_content for doc in contexts]
|
94 |
+
|
95 |
+
st.success(f"β
**Retrieved {len(context_texts)} Contexts!**")
|
96 |
+
for i, text in enumerate(context_texts, 1):
|
97 |
+
st.write(f"**Context {i}:** {text[:500]}...")
|
98 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
# Step 6: Context Relevancy Checker
|
100 |
with st.spinner("Evaluating context relevancy..."):
|
101 |
+
context_relevancy_checker_prompt = PromptTemplate(
|
102 |
+
input_variables=["retriever_query", "context"], template=relevancy_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
)
|
104 |
+
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
|
105 |
relevancy_response = context_relevancy_chain.invoke({"context": context_texts, "retriever_query": query})
|
106 |
|
107 |
+
st.subheader("π₯ Context Relevancy Evaluation")
|
108 |
st.json(relevancy_response['relevancy_response'])
|
109 |
|
110 |
# Step 7: Selecting Relevant Contexts
|
111 |
with st.spinner("Selecting the most relevant contexts..."):
|
112 |
relevant_prompt = PromptTemplate(
|
113 |
+
input_variables=["relevancy_response"], template=relevant_context_picker_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
)
|
115 |
pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
|
116 |
relevant_response = pick_relevant_context_chain.invoke({"relevancy_response": relevancy_response['relevancy_response']})
|
117 |
|
118 |
+
st.subheader("π¦ Pick Relevant Context Chain")
|
119 |
st.json(relevant_response['context_number'])
|
120 |
|
121 |
# Step 8: Retrieving Context for Response Generation
|
122 |
with st.spinner("Retrieving final context..."):
|
123 |
context_prompt = PromptTemplate(
|
124 |
+
input_variables=["context_number", "context"], template=response_synth
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
)
|
126 |
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
|
127 |
final_contexts = relevant_contexts_chain.invoke({"context_number": relevant_response['context_number'], "context": context_texts})
|
128 |
|
129 |
+
st.subheader("π₯ Relevant Contexts Extracted")
|
130 |
st.json(final_contexts['relevant_contexts'])
|
131 |
|
132 |
# Step 9: Generate Final Response
|
133 |
with st.spinner("Generating the final answer..."):
|
134 |
+
final_prompt = PromptTemplate(
|
135 |
+
input_variables=["query", "context"], template=rag_prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
)
|
137 |
+
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
|
138 |
final_response = response_chain.invoke({"query": query, "context": final_contexts['relevant_contexts']})
|
139 |
|
140 |
+
st.subheader("π₯ RAG Final Response")
|
141 |
st.success(final_response['final_response'])
|
142 |
|
143 |
# Step 10: Display Workflow Breakdown
|
144 |
+
st.subheader("π **Workflow Breakdown:**")
|
145 |
st.json({
|
146 |
"Context Relevancy Evaluation": relevancy_response["relevancy_response"],
|
147 |
"Relevant Contexts": relevant_response["context_number"],
|