File size: 7,714 Bytes
aa31b3b
e37ff79
aa31b3b
1f85d80
bca3677
8858519
 
aa31b3b
 
 
 
51225e7
 
aa31b3b
 
 
 
8858519
 
b604a12
9476a94
 
 
3371395
 
 
bca3677
b604a12
44e6288
 
 
 
 
bca3677
 
a620e89
 
 
 
 
 
f172bb5
a620e89
 
f172bb5
d38433c
b604a12
 
bca3677
 
44e6288
bca3677
a620e89
 
bca3677
b604a12
 
2320d6a
bca3677
5a1233f
 
 
 
bca3677
 
44e6288
a620e89
 
 
bca3677
5a1233f
 
bca3677
bba0424
 
a620e89
bca3677
 
 
af1d856
a620e89
bca3677
44e6288
 
a620e89
 
 
 
 
 
 
 
bca3677
a620e89
 
 
 
 
 
 
 
 
 
 
 
bca3677
 
a620e89
 
 
 
af1d856
 
 
44e6288
af1d856
 
 
 
 
 
 
3c4e62e
 
44e6288
af1d856
3c4e62e
 
af1d856
3c4e62e
 
 
 
44e6288
3c4e62e
 
 
af1d856
3c4e62e
 
 
 
44e6288
3c4e62e
 
 
af1d856
3c4e62e
 
 
 
44e6288
af1d856
3c4e62e
 
af1d856
3c4e62e
 
44e6288
bca3677
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
import chromadb
import requests
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from langchain.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth

# Set API Keys
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")

llm_judge.verbose = True
rag_llm.verbose = True

# Clear ChromaDB cache to fix tenant issue
chromadb.api.client.SharedSystemClient.clear_system_cache()

st.title("πŸ” PDF-based RAG System")

# Initialize session state variables
if "vector_store" not in st.session_state:
    st.session_state.vector_store = None
if "documents" not in st.session_state:
    st.session_state.documents = None
if "pdf_path" not in st.session_state:
    st.session_state.pdf_path = None  
if "pdf_loaded" not in st.session_state:
    st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
    st.session_state.chunked = False
if "vector_created" not in st.session_state:
    st.session_state.vector_created = False

# Step 1: Choose PDF Source
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)

if pdf_source == "Upload a PDF file":
    uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
    if uploaded_file:
        st.session_state.pdf_path = "temp.pdf"
        with open(st.session_state.pdf_path, "wb") as f:
            f.write(uploaded_file.getbuffer())
        st.session_state.pdf_loaded = False
        st.session_state.chunked = False
        st.session_state.vector_created = False
        st.success("βœ… PDF Uploaded Successfully!")

elif pdf_source == "Enter a PDF URL":
    pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998")
    if pdf_url and st.session_state.pdf_path is None:
        with st.spinner("Downloading PDF..."):
            try:
                response = requests.get(pdf_url)
                if response.status_code == 200:
                    st.session_state.pdf_path = "temp.pdf"
                    with open(st.session_state.pdf_path, "wb") as f:
                        f.write(response.content)
                    st.session_state.pdf_loaded = False
                    st.session_state.chunked = False
                    st.session_state.vector_created = False
                    st.success("βœ… PDF Downloaded Successfully!")
                else:
                    st.error("❌ Failed to download PDF. Check the URL.")
            except Exception as e:
                st.error(f"Error downloading PDF: {e}")

# Step 2: Process PDF
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
    with st.spinner("Loading and processing PDF..."):
        loader = PDFPlumberLoader(st.session_state.pdf_path)
        docs = loader.load()
        st.session_state.documents = docs
        st.session_state.pdf_loaded = True
        st.success(f"βœ… **PDF Loaded!** Total Pages: {len(docs)}")

# Step 3: Chunking (Only if Not Already Done)
if st.session_state.pdf_loaded and not st.session_state.chunked:
    with st.spinner("Chunking the document..."):
        model_name = "nomic-ai/modernbert-embed-base"
        embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
        text_splitter = SemanticChunker(embedding_model)
        documents = text_splitter.split_documents(st.session_state.documents)
        st.session_state.documents = documents
        st.session_state.chunked = True
        st.success(f"βœ… **Document Chunked!** Total Chunks: {len(documents)}")

# Step 4: Setup Vectorstore
if st.session_state.chunked and not st.session_state.vector_created:
    with st.spinner("Creating vector store..."):
        vector_store = Chroma(
            collection_name="deepseek_collection",
            collection_metadata={"hnsw:space": "cosine"},
            embedding_function=embedding_model
        )
        vector_store.add_documents(st.session_state.documents)
        num_documents = len(vector_store.get()["documents"])
        st.session_state.vector_store = vector_store
        st.session_state.vector_created = True
        st.success(f"βœ… **Vector Store Created!** Total documents stored: {num_documents}")

# Step 5: Query Input
if st.session_state.vector_created:
    query = st.text_input("πŸ” Enter a Query:")
    if query:
        with st.spinner("Retrieving relevant contexts..."):
            retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
            contexts = retriever.invoke(query)
            context_texts = [doc.page_content for doc in contexts]

        st.success(f"βœ… **Retrieved {len(context_texts)} Contexts!**")
        for i, text in enumerate(context_texts, 1):
            st.write(f"**Context {i}:** {text[:500]}...")

        # Step 6: Context Relevancy Checker
        with st.spinner("Evaluating context relevancy..."):
            context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt)
            context_relevancy_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
            relevancy_response = context_relevancy_chain.invoke({"context": context_texts, "retriever_query": query})

        st.subheader("πŸŸ₯ Context Relevancy Evaluation")
        st.json(relevancy_response['relevancy_response'])

        # Step 7: Selecting Relevant Contexts
        with st.spinner("Selecting the most relevant contexts..."):
            relevant_prompt = PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt)
            pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
            relevant_response = pick_relevant_context_chain.invoke({"relevancy_response": relevancy_response['relevancy_response']})

        st.subheader("🟦 Pick Relevant Context Chain")
        st.json(relevant_response['context_number'])

        # Step 8: Retrieving Context for Response Generation
        with st.spinner("Retrieving final context..."):
            context_prompt = PromptTemplate(input_variables=["context_number", "context"], template=response_synth)
            relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
            final_contexts = relevant_contexts_chain.invoke({"context_number": relevant_response['context_number'], "context": context_texts})

        st.subheader("πŸŸ₯ Relevant Contexts Extracted")
        st.json(final_contexts['relevant_contexts'])

        # Step 9: Generate Final Response
        with st.spinner("Generating the final answer..."):
            final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
            response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
            final_response = response_chain.invoke({"query": query, "context": final_contexts['relevant_contexts']})

        st.subheader("πŸŸ₯ RAG Final Response")
        st.success(final_response['final_response'])

else:
    st.warning("πŸ“„ Please upload or provide a PDF URL first.")