Spaces:
Build error
Build error
File size: 7,714 Bytes
aa31b3b e37ff79 aa31b3b 1f85d80 bca3677 8858519 aa31b3b 51225e7 aa31b3b 8858519 b604a12 9476a94 3371395 bca3677 b604a12 44e6288 bca3677 a620e89 f172bb5 a620e89 f172bb5 d38433c b604a12 bca3677 44e6288 bca3677 a620e89 bca3677 b604a12 2320d6a bca3677 5a1233f bca3677 44e6288 a620e89 bca3677 5a1233f bca3677 bba0424 a620e89 bca3677 af1d856 a620e89 bca3677 44e6288 a620e89 bca3677 a620e89 bca3677 a620e89 af1d856 44e6288 af1d856 3c4e62e 44e6288 af1d856 3c4e62e af1d856 3c4e62e 44e6288 3c4e62e af1d856 3c4e62e 44e6288 3c4e62e af1d856 3c4e62e 44e6288 af1d856 3c4e62e af1d856 3c4e62e 44e6288 bca3677 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import os
import chromadb
import requests
import streamlit as st
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from langchain.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
# Set API Keys
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
llm_judge.verbose = True
rag_llm.verbose = True
# Clear ChromaDB cache to fix tenant issue
chromadb.api.client.SharedSystemClient.clear_system_cache()
st.title("π PDF-based RAG System")
# Initialize session state variables
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
if "documents" not in st.session_state:
st.session_state.documents = None
if "pdf_path" not in st.session_state:
st.session_state.pdf_path = None
if "pdf_loaded" not in st.session_state:
st.session_state.pdf_loaded = False
if "chunked" not in st.session_state:
st.session_state.chunked = False
if "vector_created" not in st.session_state:
st.session_state.vector_created = False
# Step 1: Choose PDF Source
pdf_source = st.radio("Upload or provide a link to a PDF:", ["Upload a PDF file", "Enter a PDF URL"], index=0, horizontal=True)
if pdf_source == "Upload a PDF file":
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
if uploaded_file:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
st.success("β
PDF Uploaded Successfully!")
elif pdf_source == "Enter a PDF URL":
pdf_url = st.text_input("Enter PDF URL:", value="https://arxiv.org/pdf/2406.06998")
if pdf_url and st.session_state.pdf_path is None:
with st.spinner("Downloading PDF..."):
try:
response = requests.get(pdf_url)
if response.status_code == 200:
st.session_state.pdf_path = "temp.pdf"
with open(st.session_state.pdf_path, "wb") as f:
f.write(response.content)
st.session_state.pdf_loaded = False
st.session_state.chunked = False
st.session_state.vector_created = False
st.success("β
PDF Downloaded Successfully!")
else:
st.error("β Failed to download PDF. Check the URL.")
except Exception as e:
st.error(f"Error downloading PDF: {e}")
# Step 2: Process PDF
if st.session_state.pdf_path and not st.session_state.pdf_loaded:
with st.spinner("Loading and processing PDF..."):
loader = PDFPlumberLoader(st.session_state.pdf_path)
docs = loader.load()
st.session_state.documents = docs
st.session_state.pdf_loaded = True
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
# Step 3: Chunking (Only if Not Already Done)
if st.session_state.pdf_loaded and not st.session_state.chunked:
with st.spinner("Chunking the document..."):
model_name = "nomic-ai/modernbert-embed-base"
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs={'normalize_embeddings': False})
text_splitter = SemanticChunker(embedding_model)
documents = text_splitter.split_documents(st.session_state.documents)
st.session_state.documents = documents
st.session_state.chunked = True
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
# Step 4: Setup Vectorstore
if st.session_state.chunked and not st.session_state.vector_created:
with st.spinner("Creating vector store..."):
vector_store = Chroma(
collection_name="deepseek_collection",
collection_metadata={"hnsw:space": "cosine"},
embedding_function=embedding_model
)
vector_store.add_documents(st.session_state.documents)
num_documents = len(vector_store.get()["documents"])
st.session_state.vector_store = vector_store
st.session_state.vector_created = True
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
# Step 5: Query Input
if st.session_state.vector_created:
query = st.text_input("π Enter a Query:")
if query:
with st.spinner("Retrieving relevant contexts..."):
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
contexts = retriever.invoke(query)
context_texts = [doc.page_content for doc in contexts]
st.success(f"β
**Retrieved {len(context_texts)} Contexts!**")
for i, text in enumerate(context_texts, 1):
st.write(f"**Context {i}:** {text[:500]}...")
# Step 6: Context Relevancy Checker
with st.spinner("Evaluating context relevancy..."):
context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt)
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
relevancy_response = context_relevancy_chain.invoke({"context": context_texts, "retriever_query": query})
st.subheader("π₯ Context Relevancy Evaluation")
st.json(relevancy_response['relevancy_response'])
# Step 7: Selecting Relevant Contexts
with st.spinner("Selecting the most relevant contexts..."):
relevant_prompt = PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt)
pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
relevant_response = pick_relevant_context_chain.invoke({"relevancy_response": relevancy_response['relevancy_response']})
st.subheader("π¦ Pick Relevant Context Chain")
st.json(relevant_response['context_number'])
# Step 8: Retrieving Context for Response Generation
with st.spinner("Retrieving final context..."):
context_prompt = PromptTemplate(input_variables=["context_number", "context"], template=response_synth)
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
final_contexts = relevant_contexts_chain.invoke({"context_number": relevant_response['context_number'], "context": context_texts})
st.subheader("π₯ Relevant Contexts Extracted")
st.json(final_contexts['relevant_contexts'])
# Step 9: Generate Final Response
with st.spinner("Generating the final answer..."):
final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
final_response = response_chain.invoke({"query": query, "context": final_contexts['relevant_contexts']})
st.subheader("π₯ RAG Final Response")
st.success(final_response['final_response'])
else:
st.warning("π Please upload or provide a PDF URL first.")
|