File size: 6,891 Bytes
aa31b3b
 
1f85d80
8858519
 
 
aa31b3b
 
 
 
51225e7
 
8858519
aa31b3b
 
 
 
8858519
 
b604a12
9476a94
 
 
b604a12
 
44e6288
 
 
 
 
f172bb5
 
 
 
 
 
 
 
 
 
 
 
d38433c
b604a12
 
 
44e6288
 
 
f172bb5
b604a12
 
 
 
5a1233f
 
 
 
 
44e6288
 
5a1233f
f172bb5
5a1233f
 
 
44e6288
f172bb5
44e6288
af1d856
 
44e6288
 
 
 
 
2bc093c
44e6288
 
f172bb5
44e6288
 
 
 
 
 
 
 
 
 
 
f172bb5
 
44e6288
 
 
 
af1d856
 
 
44e6288
af1d856
 
 
 
 
 
 
3c4e62e
 
44e6288
af1d856
3c4e62e
 
af1d856
3c4e62e
 
 
 
44e6288
3c4e62e
 
 
af1d856
3c4e62e
 
 
 
44e6288
3c4e62e
 
 
af1d856
3c4e62e
 
 
 
44e6288
af1d856
3c4e62e
 
af1d856
3c4e62e
 
44e6288
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os
import requests
import streamlit as st
from langchain.chains import SequentialChain, LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from langchain.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth


# Set API Keys
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")

# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")

llm_judge.verbose = True
rag_llm.verbose = True

st.title("❓")

# Initialize session state variables
if "vector_store" not in st.session_state:
    st.session_state.vector_store = None
if "documents" not in st.session_state:
    st.session_state.documents = None
if "processed" not in st.session_state:
    st.session_state.processed = False  # Prevent redundant processing

# Step 1: Choose PDF Source (Horizontal radio buttons)
pdf_source = st.radio(
    "Upload or provide a link to a PDF:", 
    ["Upload a PDF file", "Enter a PDF URL"], 
    index=0, 
    horizontal=True
)

pdf_path = None
if pdf_source == "Upload a PDF file":
    uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
    if uploaded_file:
        pdf_path = "temp.pdf"
        with open(pdf_path, "wb") as f:
            f.write(uploaded_file.getbuffer())
        st.success("βœ… PDF Uploaded Successfully!")
        st.session_state.processed = False  # Reset processing

elif pdf_source == "Enter a PDF URL":
    pdf_url = st.text_input("Enter PDF URL:")
    if pdf_url:
        with st.spinner("Downloading PDF..."):
            try:
                response = requests.get(pdf_url)
                if response.status_code == 200:
                    pdf_path = "temp.pdf"
                    with open(pdf_path, "wb") as f:
                        f.write(response.content)
                    st.success("βœ… PDF Downloaded Successfully!")
                    st.session_state.processed = False  # Reset processing
                else:
                    st.error("❌ Failed to download PDF. Check the URL.")

# Step 2: Process PDF and Create Vector Store (Only if Not Processed)
if pdf_path and not st.session_state.processed:
    with st.spinner("Loading and processing PDF..."):
        loader = PDFPlumberLoader(pdf_path)
        docs = loader.load()
        st.success(f"βœ… **PDF Loaded!** Total Pages: {len(docs)}")

        # Step 3: Chunking
        with st.spinner("Chunking the document..."):
            model_name = "nomic-ai/modernbert-embed-base"
            embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs= {'normalize_embeddings': False})
            text_splitter = SemanticChunker(embedding_model)
            documents = text_splitter.split_documents(docs)
            st.session_state.documents = documents
            st.success(f"βœ… **Document Chunked!** Total Chunks: {len(documents)}")

        # Step 4: Setup Vectorstore
        with st.spinner("Creating vector store..."):
            vector_store = Chroma(
                collection_name="deepseek_collection",
                collection_metadata={"hnsw:space": "cosine"},
                embedding_function=embedding_model
            )
            vector_store.add_documents(documents)
            num_documents = len(vector_store.get()["documents"])
            st.session_state.vector_store = vector_store  # Store in session state
            st.session_state.processed = True  # Mark as processed
            st.success(f"βœ… **Vector Store Created!** Total documents stored: {num_documents}")

# Step 5: Query Input (Only allow if vector store exists)
if st.session_state.vector_store:
    query = st.text_input("πŸ” Enter a Query:")
    if query:
        with st.spinner("Retrieving relevant contexts..."):
            retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
            contexts = retriever.invoke(query)
            context_texts = [doc.page_content for doc in contexts]

        st.success(f"βœ… **Retrieved {len(context_texts)} Contexts!**")
        for i, text in enumerate(context_texts, 1):
            st.write(f"**Context {i}:** {text[:500]}...")

        # Step 6: Context Relevancy Checker
        with st.spinner("Evaluating context relevancy..."):
            context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt)
            context_relevancy_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
            relevancy_response = context_relevancy_chain.invoke({"context": context_texts, "retriever_query": query})

        st.subheader("πŸŸ₯ Context Relevancy Evaluation")
        st.json(relevancy_response['relevancy_response'])

        # Step 7: Selecting Relevant Contexts
        with st.spinner("Selecting the most relevant contexts..."):
            relevant_prompt = PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt)
            pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
            relevant_response = pick_relevant_context_chain.invoke({"relevancy_response": relevancy_response['relevancy_response']})

        st.subheader("🟦 Pick Relevant Context Chain")
        st.json(relevant_response['context_number'])

        # Step 8: Retrieving Context for Response Generation
        with st.spinner("Retrieving final context..."):
            context_prompt = PromptTemplate(input_variables=["context_number", "context"], template=response_synth)
            relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
            final_contexts = relevant_contexts_chain.invoke({"context_number": relevant_response['context_number'], "context": context_texts})

        st.subheader("πŸŸ₯ Relevant Contexts Extracted")
        st.json(final_contexts['relevant_contexts'])

        # Step 9: Generate Final Response
        with st.spinner("Generating the final answer..."):
            final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
            response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
            final_response = response_chain.invoke({"query": query, "context": final_contexts['relevant_contexts']})

        st.subheader("πŸŸ₯ RAG Final Response")
        st.success(final_response['final_response'])

else:
    st.warning("πŸ“„ Please upload or provide a PDF URL first.")