Spaces:
Build error
Build error
File size: 6,891 Bytes
aa31b3b 1f85d80 8858519 aa31b3b 51225e7 8858519 aa31b3b 8858519 b604a12 9476a94 b604a12 44e6288 f172bb5 d38433c b604a12 44e6288 f172bb5 b604a12 5a1233f 44e6288 5a1233f f172bb5 5a1233f 44e6288 f172bb5 44e6288 af1d856 44e6288 2bc093c 44e6288 f172bb5 44e6288 f172bb5 44e6288 af1d856 44e6288 af1d856 3c4e62e 44e6288 af1d856 3c4e62e af1d856 3c4e62e 44e6288 3c4e62e af1d856 3c4e62e 44e6288 3c4e62e af1d856 3c4e62e 44e6288 af1d856 3c4e62e af1d856 3c4e62e 44e6288 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import os
import requests
import streamlit as st
from langchain.chains import SequentialChain, LLMChain
from langchain.prompts import PromptTemplate
from langchain_groq import ChatGroq
from langchain.document_loaders import PDFPlumberLoader
from langchain_experimental.text_splitter import SemanticChunker
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_chroma import Chroma
from prompts import rag_prompt, relevancy_prompt, relevant_context_picker_prompt, response_synth
# Set API Keys
os.environ["GROQ_API_KEY"] = st.secrets.get("GROQ_API_KEY", "")
# Load LLM models
llm_judge = ChatGroq(model="deepseek-r1-distill-llama-70b")
rag_llm = ChatGroq(model="mixtral-8x7b-32768")
llm_judge.verbose = True
rag_llm.verbose = True
st.title("β")
# Initialize session state variables
if "vector_store" not in st.session_state:
st.session_state.vector_store = None
if "documents" not in st.session_state:
st.session_state.documents = None
if "processed" not in st.session_state:
st.session_state.processed = False # Prevent redundant processing
# Step 1: Choose PDF Source (Horizontal radio buttons)
pdf_source = st.radio(
"Upload or provide a link to a PDF:",
["Upload a PDF file", "Enter a PDF URL"],
index=0,
horizontal=True
)
pdf_path = None
if pdf_source == "Upload a PDF file":
uploaded_file = st.file_uploader("Upload your PDF file", type="pdf")
if uploaded_file:
pdf_path = "temp.pdf"
with open(pdf_path, "wb") as f:
f.write(uploaded_file.getbuffer())
st.success("β
PDF Uploaded Successfully!")
st.session_state.processed = False # Reset processing
elif pdf_source == "Enter a PDF URL":
pdf_url = st.text_input("Enter PDF URL:")
if pdf_url:
with st.spinner("Downloading PDF..."):
try:
response = requests.get(pdf_url)
if response.status_code == 200:
pdf_path = "temp.pdf"
with open(pdf_path, "wb") as f:
f.write(response.content)
st.success("β
PDF Downloaded Successfully!")
st.session_state.processed = False # Reset processing
else:
st.error("β Failed to download PDF. Check the URL.")
# Step 2: Process PDF and Create Vector Store (Only if Not Processed)
if pdf_path and not st.session_state.processed:
with st.spinner("Loading and processing PDF..."):
loader = PDFPlumberLoader(pdf_path)
docs = loader.load()
st.success(f"β
**PDF Loaded!** Total Pages: {len(docs)}")
# Step 3: Chunking
with st.spinner("Chunking the document..."):
model_name = "nomic-ai/modernbert-embed-base"
embedding_model = HuggingFaceEmbeddings(model_name=model_name, model_kwargs={'device': 'cpu'}, encode_kwargs= {'normalize_embeddings': False})
text_splitter = SemanticChunker(embedding_model)
documents = text_splitter.split_documents(docs)
st.session_state.documents = documents
st.success(f"β
**Document Chunked!** Total Chunks: {len(documents)}")
# Step 4: Setup Vectorstore
with st.spinner("Creating vector store..."):
vector_store = Chroma(
collection_name="deepseek_collection",
collection_metadata={"hnsw:space": "cosine"},
embedding_function=embedding_model
)
vector_store.add_documents(documents)
num_documents = len(vector_store.get()["documents"])
st.session_state.vector_store = vector_store # Store in session state
st.session_state.processed = True # Mark as processed
st.success(f"β
**Vector Store Created!** Total documents stored: {num_documents}")
# Step 5: Query Input (Only allow if vector store exists)
if st.session_state.vector_store:
query = st.text_input("π Enter a Query:")
if query:
with st.spinner("Retrieving relevant contexts..."):
retriever = st.session_state.vector_store.as_retriever(search_type="similarity", search_kwargs={"k": 5})
contexts = retriever.invoke(query)
context_texts = [doc.page_content for doc in contexts]
st.success(f"β
**Retrieved {len(context_texts)} Contexts!**")
for i, text in enumerate(context_texts, 1):
st.write(f"**Context {i}:** {text[:500]}...")
# Step 6: Context Relevancy Checker
with st.spinner("Evaluating context relevancy..."):
context_relevancy_checker_prompt = PromptTemplate(input_variables=["retriever_query", "context"], template=relevancy_prompt)
context_relevancy_chain = LLMChain(llm=llm_judge, prompt=context_relevancy_checker_prompt, output_key="relevancy_response")
relevancy_response = context_relevancy_chain.invoke({"context": context_texts, "retriever_query": query})
st.subheader("π₯ Context Relevancy Evaluation")
st.json(relevancy_response['relevancy_response'])
# Step 7: Selecting Relevant Contexts
with st.spinner("Selecting the most relevant contexts..."):
relevant_prompt = PromptTemplate(input_variables=["relevancy_response"], template=relevant_context_picker_prompt)
pick_relevant_context_chain = LLMChain(llm=llm_judge, prompt=relevant_prompt, output_key="context_number")
relevant_response = pick_relevant_context_chain.invoke({"relevancy_response": relevancy_response['relevancy_response']})
st.subheader("π¦ Pick Relevant Context Chain")
st.json(relevant_response['context_number'])
# Step 8: Retrieving Context for Response Generation
with st.spinner("Retrieving final context..."):
context_prompt = PromptTemplate(input_variables=["context_number", "context"], template=response_synth)
relevant_contexts_chain = LLMChain(llm=llm_judge, prompt=context_prompt, output_key="relevant_contexts")
final_contexts = relevant_contexts_chain.invoke({"context_number": relevant_response['context_number'], "context": context_texts})
st.subheader("π₯ Relevant Contexts Extracted")
st.json(final_contexts['relevant_contexts'])
# Step 9: Generate Final Response
with st.spinner("Generating the final answer..."):
final_prompt = PromptTemplate(input_variables=["query", "context"], template=rag_prompt)
response_chain = LLMChain(llm=rag_llm, prompt=final_prompt, output_key="final_response")
final_response = response_chain.invoke({"query": query, "context": final_contexts['relevant_contexts']})
st.subheader("π₯ RAG Final Response")
st.success(final_response['final_response'])
else:
st.warning("π Please upload or provide a PDF URL first.") |