Draken007's picture
Upload 7228 files
2a0bc63 verified
#!/usr/bin/env python
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from accelerate import PartialState
from accelerate.test_utils.testing import assert_exception
from accelerate.utils.dataclasses import DistributedType
from accelerate.utils.operations import (
DistributedOperationException,
broadcast,
copy_tensor_to_devices,
gather,
gather_object,
pad_across_processes,
reduce,
)
def create_tensor(state):
return (torch.arange(state.num_processes) + 1.0 + (state.num_processes * state.process_index)).to(state.device)
def test_gather(state):
tensor = create_tensor(state)
gathered_tensor = gather(tensor)
assert gathered_tensor.tolist() == list(range(1, state.num_processes**2 + 1))
def test_gather_object(state):
# Gather objects in TorchXLA is not supported.
if state.distributed_type == DistributedType.XLA:
return
obj = [state.process_index]
gathered_obj = gather_object(obj)
assert len(gathered_obj) == state.num_processes, f"{gathered_obj}, {len(gathered_obj)} != {state.num_processes}"
assert gathered_obj == list(range(state.num_processes)), f"{gathered_obj} != {list(range(state.num_processes))}"
def test_gather_non_contigous(state):
# Skip this test because the 'is_contiguous' function of XLA tensor always returns True.
if state.distributed_type == DistributedType.XLA:
return
# Create a non-contiguous tensor
tensor = torch.arange(12).view(4, 3).t().to(state.device)
assert not tensor.is_contiguous()
# Shouldn't error out
_ = gather(tensor)
def test_broadcast(state):
tensor = create_tensor(state)
broadcasted_tensor = broadcast(tensor)
assert broadcasted_tensor.shape == torch.Size([state.num_processes])
assert broadcasted_tensor.tolist() == list(range(1, state.num_processes + 1))
def test_pad_across_processes(state):
# We need to pad the tensor with one more element if we are the main process
# to ensure that we can pad
if state.is_main_process:
tensor = torch.arange(state.num_processes + 1).to(state.device)
else:
tensor = torch.arange(state.num_processes).to(state.device)
padded_tensor = pad_across_processes(tensor)
assert padded_tensor.shape == torch.Size([state.num_processes + 1])
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0, state.num_processes)) + [0]
def test_reduce_sum(state):
# For now runs on only two processes
if state.num_processes != 2:
return
tensor = create_tensor(state)
reduced_tensor = reduce(tensor, "sum")
truth_tensor = torch.tensor([4.0, 6]).to(state.device)
assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}"
def test_reduce_mean(state):
# For now runs on only two processes
if state.num_processes != 2:
return
tensor = create_tensor(state)
reduced_tensor = reduce(tensor, "mean")
truth_tensor = torch.tensor([2.0, 3]).to(state.device)
assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}"
def test_op_checker(state):
# Must be in a distributed state, and gathering is currently not supported in TorchXLA.
if state.distributed_type in [DistributedType.NO, DistributedType.XLA]:
return
state.debug = True
# `pad_across_processes`
if state.process_index == 0:
data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)}
else:
data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4, 5]]]).to(state.device)}
with assert_exception(DistributedOperationException):
pad_across_processes(data, dim=0)
# `reduce`
if state.process_index == 0:
data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)}
else:
data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)}
with assert_exception(DistributedOperationException):
reduce(data)
# `broadcast`
if state.process_index == 0:
data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)}
else:
data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)}
with assert_exception(DistributedOperationException):
broadcast(data)
state.debug = False
def test_copy_tensor_to_devices(state):
if state.distributed_type not in [DistributedType.MULTI_GPU, DistributedType.XLA]:
return
if state.is_main_process:
tensor = torch.tensor([1, 2, 3], dtype=torch.int).to(state.device)
else:
tensor = None
tensor = copy_tensor_to_devices(tensor)
assert torch.allclose(tensor, torch.tensor([1, 2, 3], dtype=torch.int, device=state.device))
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
def main():
state = PartialState()
state.print(f"State: {state}")
state.print("testing gather")
test_gather(state)
state.print("testing gather_object")
test_gather_object(state)
state.print("testing gather non-contigous")
test_gather_non_contigous(state)
state.print("testing broadcast")
test_broadcast(state)
state.print("testing pad_across_processes")
test_pad_across_processes(state)
state.print("testing reduce_sum")
test_reduce_sum(state)
state.print("testing reduce_mean")
test_reduce_mean(state)
state.print("testing op_checker")
test_op_checker(state)
state.print("testing sending tensors across devices")
test_copy_tensor_to_devices(state)
if __name__ == "__main__":
main()