File size: 6,170 Bytes
2a0bc63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
#!/usr/bin/env python

# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch

from accelerate import PartialState
from accelerate.test_utils.testing import assert_exception
from accelerate.utils.dataclasses import DistributedType
from accelerate.utils.operations import (
    DistributedOperationException,
    broadcast,
    copy_tensor_to_devices,
    gather,
    gather_object,
    pad_across_processes,
    reduce,
)


def create_tensor(state):
    return (torch.arange(state.num_processes) + 1.0 + (state.num_processes * state.process_index)).to(state.device)


def test_gather(state):
    tensor = create_tensor(state)
    gathered_tensor = gather(tensor)
    assert gathered_tensor.tolist() == list(range(1, state.num_processes**2 + 1))


def test_gather_object(state):
    # Gather objects in TorchXLA is not supported.
    if state.distributed_type == DistributedType.XLA:
        return
    obj = [state.process_index]
    gathered_obj = gather_object(obj)
    assert len(gathered_obj) == state.num_processes, f"{gathered_obj}, {len(gathered_obj)} != {state.num_processes}"
    assert gathered_obj == list(range(state.num_processes)), f"{gathered_obj} != {list(range(state.num_processes))}"


def test_gather_non_contigous(state):
    # Skip this test because the 'is_contiguous' function of XLA tensor always returns True.
    if state.distributed_type == DistributedType.XLA:
        return
    # Create a non-contiguous tensor
    tensor = torch.arange(12).view(4, 3).t().to(state.device)
    assert not tensor.is_contiguous()
    # Shouldn't error out
    _ = gather(tensor)


def test_broadcast(state):
    tensor = create_tensor(state)
    broadcasted_tensor = broadcast(tensor)
    assert broadcasted_tensor.shape == torch.Size([state.num_processes])
    assert broadcasted_tensor.tolist() == list(range(1, state.num_processes + 1))


def test_pad_across_processes(state):
    # We need to pad the tensor with one more element if we are the main process
    # to ensure that we can pad
    if state.is_main_process:
        tensor = torch.arange(state.num_processes + 1).to(state.device)
    else:
        tensor = torch.arange(state.num_processes).to(state.device)
    padded_tensor = pad_across_processes(tensor)
    assert padded_tensor.shape == torch.Size([state.num_processes + 1])
    if not state.is_main_process:
        assert padded_tensor.tolist() == list(range(0, state.num_processes)) + [0]


def test_reduce_sum(state):
    # For now runs on only two processes
    if state.num_processes != 2:
        return
    tensor = create_tensor(state)
    reduced_tensor = reduce(tensor, "sum")
    truth_tensor = torch.tensor([4.0, 6]).to(state.device)
    assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}"


def test_reduce_mean(state):
    # For now runs on only two processes
    if state.num_processes != 2:
        return
    tensor = create_tensor(state)
    reduced_tensor = reduce(tensor, "mean")
    truth_tensor = torch.tensor([2.0, 3]).to(state.device)
    assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}"


def test_op_checker(state):
    # Must be in a distributed state, and gathering is currently not supported in TorchXLA.
    if state.distributed_type in [DistributedType.NO, DistributedType.XLA]:
        return
    state.debug = True
    # `pad_across_processes`
    if state.process_index == 0:
        data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)}
    else:
        data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4, 5]]]).to(state.device)}

    with assert_exception(DistributedOperationException):
        pad_across_processes(data, dim=0)

    # `reduce`
    if state.process_index == 0:
        data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)}
    else:
        data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)}

    with assert_exception(DistributedOperationException):
        reduce(data)

    # `broadcast`
    if state.process_index == 0:
        data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)}
    else:
        data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)}

    with assert_exception(DistributedOperationException):
        broadcast(data)

    state.debug = False


def test_copy_tensor_to_devices(state):
    if state.distributed_type not in [DistributedType.MULTI_GPU, DistributedType.XLA]:
        return
    if state.is_main_process:
        tensor = torch.tensor([1, 2, 3], dtype=torch.int).to(state.device)
    else:
        tensor = None
    tensor = copy_tensor_to_devices(tensor)
    assert torch.allclose(tensor, torch.tensor([1, 2, 3], dtype=torch.int, device=state.device))


def _mp_fn(index):
    # For xla_spawn (TPUs)
    main()


def main():
    state = PartialState()
    state.print(f"State: {state}")
    state.print("testing gather")
    test_gather(state)
    state.print("testing gather_object")
    test_gather_object(state)
    state.print("testing gather non-contigous")
    test_gather_non_contigous(state)
    state.print("testing broadcast")
    test_broadcast(state)
    state.print("testing pad_across_processes")
    test_pad_across_processes(state)
    state.print("testing reduce_sum")
    test_reduce_sum(state)
    state.print("testing reduce_mean")
    test_reduce_mean(state)
    state.print("testing op_checker")
    test_op_checker(state)
    state.print("testing sending tensors across devices")
    test_copy_tensor_to_devices(state)


if __name__ == "__main__":
    main()