#!/usr/bin/env python # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.test_utils.testing import assert_exception from accelerate.utils.dataclasses import DistributedType from accelerate.utils.operations import ( DistributedOperationException, broadcast, copy_tensor_to_devices, gather, gather_object, pad_across_processes, reduce, ) def create_tensor(state): return (torch.arange(state.num_processes) + 1.0 + (state.num_processes * state.process_index)).to(state.device) def test_gather(state): tensor = create_tensor(state) gathered_tensor = gather(tensor) assert gathered_tensor.tolist() == list(range(1, state.num_processes**2 + 1)) def test_gather_object(state): # Gather objects in TorchXLA is not supported. if state.distributed_type == DistributedType.XLA: return obj = [state.process_index] gathered_obj = gather_object(obj) assert len(gathered_obj) == state.num_processes, f"{gathered_obj}, {len(gathered_obj)} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes)), f"{gathered_obj} != {list(range(state.num_processes))}" def test_gather_non_contigous(state): # Skip this test because the 'is_contiguous' function of XLA tensor always returns True. if state.distributed_type == DistributedType.XLA: return # Create a non-contiguous tensor tensor = torch.arange(12).view(4, 3).t().to(state.device) assert not tensor.is_contiguous() # Shouldn't error out _ = gather(tensor) def test_broadcast(state): tensor = create_tensor(state) broadcasted_tensor = broadcast(tensor) assert broadcasted_tensor.shape == torch.Size([state.num_processes]) assert broadcasted_tensor.tolist() == list(range(1, state.num_processes + 1)) def test_pad_across_processes(state): # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: tensor = torch.arange(state.num_processes + 1).to(state.device) else: tensor = torch.arange(state.num_processes).to(state.device) padded_tensor = pad_across_processes(tensor) assert padded_tensor.shape == torch.Size([state.num_processes + 1]) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0, state.num_processes)) + [0] def test_reduce_sum(state): # For now runs on only two processes if state.num_processes != 2: return tensor = create_tensor(state) reduced_tensor = reduce(tensor, "sum") truth_tensor = torch.tensor([4.0, 6]).to(state.device) assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}" def test_reduce_mean(state): # For now runs on only two processes if state.num_processes != 2: return tensor = create_tensor(state) reduced_tensor = reduce(tensor, "mean") truth_tensor = torch.tensor([2.0, 3]).to(state.device) assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}" def test_op_checker(state): # Must be in a distributed state, and gathering is currently not supported in TorchXLA. if state.distributed_type in [DistributedType.NO, DistributedType.XLA]: return state.debug = True # `pad_across_processes` if state.process_index == 0: data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)} else: data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4, 5]]]).to(state.device)} with assert_exception(DistributedOperationException): pad_across_processes(data, dim=0) # `reduce` if state.process_index == 0: data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)} else: data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)} with assert_exception(DistributedOperationException): reduce(data) # `broadcast` if state.process_index == 0: data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)} else: data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)} with assert_exception(DistributedOperationException): broadcast(data) state.debug = False def test_copy_tensor_to_devices(state): if state.distributed_type not in [DistributedType.MULTI_GPU, DistributedType.XLA]: return if state.is_main_process: tensor = torch.tensor([1, 2, 3], dtype=torch.int).to(state.device) else: tensor = None tensor = copy_tensor_to_devices(tensor) assert torch.allclose(tensor, torch.tensor([1, 2, 3], dtype=torch.int, device=state.device)) def _mp_fn(index): # For xla_spawn (TPUs) main() def main(): state = PartialState() state.print(f"State: {state}") state.print("testing gather") test_gather(state) state.print("testing gather_object") test_gather_object(state) state.print("testing gather non-contigous") test_gather_non_contigous(state) state.print("testing broadcast") test_broadcast(state) state.print("testing pad_across_processes") test_pad_across_processes(state) state.print("testing reduce_sum") test_reduce_sum(state) state.print("testing reduce_mean") test_reduce_mean(state) state.print("testing op_checker") test_op_checker(state) state.print("testing sending tensors across devices") test_copy_tensor_to_devices(state) if __name__ == "__main__": main()