File size: 18,909 Bytes
49d4954
 
 
 
 
 
 
 
 
0ded2d6
fb9dbfc
 
 
29fa1d0
ac06db6
29fa1d0
fb9dbfc
 
 
 
 
 
 
 
 
49d4954
 
ac06db6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49d4954
0ded2d6
 
 
 
 
 
 
 
 
 
49d4954
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d4e763
 
49d4954
1d4e763
bc9137b
76678b6
ac06db6
76678b6
 
 
bc9137b
76678b6
 
 
bc9137b
76678b6
 
bc9137b
0f04459
76678b6
 
0f04459
76678b6
 
 
0f04459
76678b6
 
0f04459
76678b6
 
 
0f04459
76678b6
 
0f04459
76678b6
0f04459
 
ac06db6
 
4248210
bc9137b
76678b6
0f04459
ac06db6
 
0f04459
bc9137b
 
76678b6
 
 
bc9137b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76678b6
bc9137b
76678b6
bc9137b
 
 
 
 
 
 
 
 
76678b6
 
 
 
 
0f04459
76678b6
 
 
 
 
 
0f04459
 
 
 
76678b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f04459
 
 
 
76678b6
0f04459
76678b6
 
 
 
 
 
0ded2d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76678b6
0ded2d6
49d4954
 
 
 
 
 
 
 
 
 
 
 
 
0f04459
 
49d4954
 
 
0ded2d6
 
 
 
 
 
 
 
 
 
 
 
 
 
0f04459
 
0ded2d6
 
76678b6
 
49d4954
76678b6
8e99946
 
 
 
49d4954
 
0f04459
76678b6
 
0f04459
76678b6
0f04459
49d4954
76678b6
0f04459
e152f3a
76678b6
0f04459
0ded2d6
76678b6
0f04459
 
 
49d4954
0f04459
76678b6
 
0f04459
49d4954
76678b6
 
0f04459
76678b6
 
8e99946
0f04459
8e99946
76678b6
8e99946
 
 
 
 
 
 
0f04459
8e99946
76678b6
0f04459
 
 
76678b6
0f04459
76678b6
8e99946
76678b6
8e99946
 
76678b6
49d4954
fb9dbfc
49d4954
 
 
 
 
bb47725
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49d4954
d800f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a349a7f
d800f84
 
 
 
 
 
 
 
a349a7f
d800f84
 
 
4236cfe
d800f84
4236cfe
d800f84
 
4236cfe
 
d800f84
 
 
 
0ded2d6
d800f84
 
 
 
4236cfe
 
 
 
 
d800f84
 
4236cfe
 
 
 
 
 
d800f84
 
4236cfe
d800f84
 
4236cfe
 
 
 
 
d800f84
 
4236cfe
 
d800f84
 
 
 
4236cfe
0ded2d6
 
 
 
 
 
4236cfe
 
d800f84
4236cfe
d800f84
4236cfe
49d4954
d800f84
 
a349a7f
 
 
 
d800f84
 
 
 
 
00a1ccb
8e99946
a349a7f
d800f84
 
 
 
 
 
 
 
 
 
49d4954
bb47725
af7a5be
 
 
 
 
 
0ded2d6
 
bb47725
 
7ef91cf
49d4954
 
d800f84
49d4954
9217369
 
 
a899a5c
9217369
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
import gradio as gr
import torch
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn
import math
import logging
import sys

from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
from huggingface_hub import snapshot_download

# 设置日志
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.StreamHandler(sys.stdout)
    ]
)
logger = logging.getLogger(__name__)

MODEL_ID = "Djrango/Qwen2vl-Flux"
MODEL_CACHE_DIR = "model_cache"

# 预下载所有模型
def download_models():
    logger.info("Starting model download...")
    try:
        # 下载完整模型仓库
        snapshot_download(
            repo_id=MODEL_ID,
            local_dir=MODEL_CACHE_DIR,
            local_dir_use_symlinks=False
        )
        
        logger.info("Model download completed successfully")
    except Exception as e:
        logger.error(f"Error downloading models: {str(e)}")
        raise

# 在脚本开始时下载模型
if not os.path.exists(MODEL_CACHE_DIR):
    download_models()

# Add aspect ratio options
ASPECT_RATIOS = {
    "1:1": (1024, 1024),
    "16:9": (1344, 768),
    "9:16": (768, 1344),
    "2.4:1": (1536, 640),
    "3:4": (896, 1152),
    "4:3": (1152, 896),
}

class Qwen2Connector(nn.Module):
    def __init__(self, input_dim=3584, output_dim=4096):
        super().__init__()
        self.linear = nn.Linear(input_dim, output_dim)
    
    def forward(self, x):
        return self.linear(x)

class FluxInterface:
    def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
        self.device = device
        self.dtype = torch.bfloat16
        self.models = None
        self.MODEL_ID = "Djrango/Qwen2vl-Flux"
        
    def load_models(self):
        if self.models is not None:
            return

        logger.info("Starting model loading...")
        
        # 1. 首先加载较小的模型到GPU
        tokenizer = CLIPTokenizer.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/tokenizer"))
        text_encoder = CLIPTextModel.from_pretrained(
            os.path.join(MODEL_CACHE_DIR, "flux/text_encoder")
        ).to(self.dtype).to(self.device)
        
        text_encoder_two = T5EncoderModel.from_pretrained(
            os.path.join(MODEL_CACHE_DIR, "flux/text_encoder_2")
        ).to(self.dtype).to(self.device)
        
        tokenizer_two = T5TokenizerFast.from_pretrained(
            os.path.join(MODEL_CACHE_DIR, "flux/tokenizer_2"))
        
        # 2. 将大模型加载到CPU,但保持bfloat16精度
        vae = AutoencoderKL.from_pretrained(
            os.path.join(MODEL_CACHE_DIR, "flux/vae")
        ).to(self.dtype).cpu()
        
        transformer = FluxTransformer2DModel.from_pretrained(
            os.path.join(MODEL_CACHE_DIR, "flux/transformer")
        ).to(self.dtype).cpu()
        
        scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
            os.path.join(MODEL_CACHE_DIR, "flux/scheduler"),
            shift=1
        )
        
        # 3. Qwen2VL加载到CPU,保持bfloat16
        qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
            os.path.join(MODEL_CACHE_DIR, "qwen2-vl")
        ).to(self.dtype).cpu()
        
        # 4. 加载connector和embedder,保持bfloat16
        connector = Qwen2Connector().to(self.dtype).cpu()
        connector_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/connector.pt")
        connector_state = torch.load(connector_path, map_location='cpu')
        connector_state = {k.replace('module.', ''): v.to(self.dtype) for k, v in connector_state.items()}
        connector.load_state_dict(connector_state)
        
        self.t5_context_embedder = nn.Linear(4096, 3072).to(self.dtype).cpu()
        t5_embedder_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/t5_embedder.pt")
        t5_embedder_state = torch.load(t5_embedder_path, map_location='cpu')
        t5_embedder_state = {k: v.to(self.dtype) for k, v in t5_embedder_state.items()}
        self.t5_context_embedder.load_state_dict(t5_embedder_state)
        
        # 5. 设置所有模型为eval模式
        for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl, 
                     connector, self.t5_context_embedder]:
            model.requires_grad_(False)
            model.eval()
        
        logger.info("All models loaded successfully")
        
        self.models = {
            'tokenizer': tokenizer,
            'text_encoder': text_encoder,
            'text_encoder_two': text_encoder_two,
            'tokenizer_two': tokenizer_two,
            'vae': vae,
            'transformer': transformer,
            'scheduler': scheduler,
            'qwen2vl': qwen2vl,
            'connector': connector
        }
        
        self.qwen2vl_processor = AutoProcessor.from_pretrained(
            self.MODEL_ID,
            subfolder="qwen2-vl",
            min_pixels=256*28*28,
            max_pixels=256*28*28
        )
        
        self.pipeline = FluxPipeline(
            transformer=transformer,
            scheduler=scheduler,
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
        )

    def move_to_device(self, model, device):
        """Helper function to move model to specified device"""
        if hasattr(model, 'to'):
            return model.to(self.dtype).to(device)
        return model

    def process_image(self, image):
        """Process image with Qwen2VL model"""
        try:
            # 1. 将Qwen2VL相关模型移到GPU
            logger.info("Moving Qwen2VL models to GPU...")
            self.models['qwen2vl'] = self.models['qwen2vl'].to(self.device)
            self.models['connector'] = self.models['connector'].to(self.device)
            logger.info("Qwen2VL models moved to GPU")
            
            message = [
                {
                    "role": "user",
                    "content": [
                        {"type": "image", "image": image},
                        {"type": "text", "text": "Describe this image."},
                    ]
                }
            ]
            text = self.qwen2vl_processor.apply_chat_template(
                message, 
                tokenize=False, 
                add_generation_prompt=True
            )

            with torch.no_grad():
                inputs = self.qwen2vl_processor(
                    text=[text], 
                    images=[image], 
                    padding=True, 
                    return_tensors="pt"
                ).to(self.device)
                
                output_hidden_state, image_token_mask, image_grid_thw = self.models['qwen2vl'](**inputs)
                image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
                image_hidden_state = self.models['connector'](image_hidden_state)
                
                # 保存结果到CPU
                result = (image_hidden_state.cpu(), image_grid_thw)
            
            # 2. 将Qwen2VL相关模型移回CPU
            logger.info("Moving Qwen2VL models back to CPU...")
            self.models['qwen2vl'] = self.models['qwen2vl'].cpu()
            self.models['connector'] = self.models['connector'].cpu()
            torch.cuda.empty_cache()
            logger.info("Qwen2VL models moved to CPU and GPU cache cleared")
            
            return result
            
        except Exception as e:
            logger.error(f"Error in process_image: {str(e)}")
            raise
    
    def resize_image(self, img, max_pixels=1050000):
        if not isinstance(img, Image.Image):
            img = Image.fromarray(img)
        
        width, height = img.size
        num_pixels = width * height
        
        if num_pixels > max_pixels:
            scale = math.sqrt(max_pixels / num_pixels)
            new_width = int(width * scale)
            new_height = int(height * scale)
            new_width = new_width - (new_width % 8)
            new_height = new_height - (new_height % 8)
            img = img.resize((new_width, new_height), Image.LANCZOS)
        
        return img
 
    def compute_t5_text_embeddings(self, prompt):
        """Compute T5 embeddings for text prompt"""
        if prompt == "":
            return None
            
        text_inputs = self.models['tokenizer_two'](
            prompt,
            padding="max_length",
            max_length=256,
            truncation=True,
            return_tensors="pt"
        ).to(self.device)
        
        prompt_embeds = self.models['text_encoder_two'](text_inputs.input_ids)[0]
        prompt_embeds = self.t5_context_embedder.to(self.device)(prompt_embeds)
        self.t5_context_embedder = self.t5_context_embedder.cpu()
        
        return prompt_embeds

    def compute_text_embeddings(self, prompt=""):
        with torch.no_grad():
            text_inputs = self.models['tokenizer'](
                prompt,
                padding="max_length",
                max_length=77,
                truncation=True,
                return_tensors="pt"
            ).to(self.device)

            prompt_embeds = self.models['text_encoder'](
                text_inputs.input_ids,
                output_hidden_states=False
            )
            pooled_prompt_embeds = prompt_embeds.pooler_output
            return pooled_prompt_embeds


    def generate(self, input_image, prompt="", guidance_scale=3.5, 
                num_inference_steps=28, num_images=2, seed=None, aspect_ratio="1:1"):
        try:
            logger.info(f"Starting generation with prompt: {prompt}")
            
            if input_image is None:
                raise ValueError("No input image provided")
                
            if seed is not None:
                torch.manual_seed(seed)
                logger.info(f"Set random seed to: {seed}")
                 
            # 1. 使用Qwen2VL处理图像
            logger.info("Processing input image with Qwen2VL...")
            qwen2_hidden_state, image_grid_thw = self.process_image(input_image)
            logger.info("Image processing completed")
            
            # 2. 计算文本嵌入
            logger.info("Computing text embeddings...")
            pooled_prompt_embeds = self.compute_text_embeddings(prompt)
            t5_prompt_embeds = self.compute_t5_text_embeddings(prompt)
            logger.info("Text embeddings computed")
            
            # 3. 将Transformer和VAE移到GPU
            logger.info("Moving Transformer and VAE to GPU...")
            self.models['transformer'] = self.models['transformer'].to(self.device)
            self.models['vae'] = self.models['vae'].to(self.device)
            
            # 更新pipeline中的模型引用
            self.pipeline.transformer = self.models['transformer']
            self.pipeline.vae = self.models['vae']
            logger.info("Models moved to GPU")
            
            # 获取维度
            width, height = ASPECT_RATIOS[aspect_ratio]
            logger.info(f"Using dimensions: {width}x{height}")
            
            # 4. 生成图像
            try:
                logger.info("Starting image generation...")
                output_images = self.pipeline(
                    prompt_embeds=qwen2_hidden_state.to(self.device).repeat(num_images, 1, 1),
                    pooled_prompt_embeds=pooled_prompt_embeds,
                    t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
                    num_inference_steps=num_inference_steps,
                    guidance_scale=guidance_scale,
                    height=height,
                    width=width,
                ).images
                logger.info("Image generation completed")
                
                # 5. 将Transformer和VAE移回CPU
                logger.info("Moving models back to CPU...")
                self.models['transformer'] = self.models['transformer'].cpu()
                self.models['vae'] = self.models['vae'].cpu()
                torch.cuda.empty_cache()
                logger.info("Models moved to CPU and GPU cache cleared")
                
                return output_images
                
            except Exception as e:
                raise RuntimeError(f"Error generating images: {str(e)}")
                
        except Exception as e:
            logger.error(f"Error during generation: {str(e)}")
            raise gr.Error(f"Generation failed: {str(e)}")

# Initialize the interface
interface = FluxInterface()

def process_request(input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None, aspect_ratio="1:1"):
    """主处理函数,直接处理用户请求"""
    try:
        if interface.models is None:
            interface.load_models()
            
        return interface.generate(
            input_image=input_image,
            prompt=prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            num_images=num_images,
            seed=seed,
            aspect_ratio=aspect_ratio
        )
    except Exception as e:
        logger.error(f"Error during generation: {str(e)}")
        raise gr.Error(f"Generation failed: {str(e)}")

# Create Gradio interface
with gr.Blocks(
    theme=gr.themes.Soft(),
    css="""
        .container { 
            max-width: 1200px; 
            margin: auto; 
            padding: 0 20px;
        }
        .header { 
            text-align: center; 
            margin: 20px 0 40px 0;
            padding: 20px;
            background: #f7f7f7;
            border-radius: 12px;
        }
        .param-row {
            padding: 10px 0;
        }
        footer {
            margin-top: 40px;
            padding: 20px;
            border-top: 1px solid #eee;
        }
    """
) as demo:
    with gr.Column(elem_classes="container"):
        gr.Markdown(
            """
            <div class="header">
                # 🎨 Qwen2vl-Flux Image Variation Demo
                Generate creative variations of your images with optional text guidance
            </div>
            """
        )
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                # Input Section
                input_image = gr.Image(
                    label="Upload Your Image",
                    type="pil",
                    height=384,
                    sources=["upload", "clipboard"]
                )
                
                with gr.Accordion("Advanced Settings", open=False):
                    with gr.Group():
                        prompt = gr.Textbox(
                            label="Text Prompt (Optional)",
                            placeholder="As Long As Possible...",
                            lines=3
                        )
                        
                        with gr.Row(elem_classes="param-row"):
                            guidance = gr.Slider(
                                minimum=1,
                                maximum=10,
                                value=3.5,
                                step=0.5,
                                label="Guidance Scale",
                                info="Higher values follow prompt more closely"
                            )
                            steps = gr.Slider(
                                minimum=1,
                                maximum=50,
                                value=28,
                                step=1,
                                label="Sampling Steps",
                                info="More steps = better quality but slower"
                            )
                            
                        with gr.Row(elem_classes="param-row"):
                            num_images = gr.Slider(
                                minimum=1,
                                maximum=4,
                                value=2,
                                step=1,
                                label="Number of Images",
                                info="Generate multiple variations at once"
                            )
                            seed = gr.Number(
                                label="Random Seed",
                                value=None,
                                precision=0,
                                info="Set for reproducible results"
                            )
                            aspect_ratio = gr.Radio(
                                label="Aspect Ratio",
                                choices=["1:1", "16:9", "9:16", "2.4:1", "3:4", "4:3"],
                                value="1:1",
                                info="Choose aspect ratio for generated images"
                            )
                
                submit_btn = gr.Button(
                    "🎨 Generate Variations",
                    variant="primary",
                    size="lg"
                )
            
            with gr.Column(scale=1):
                # Output Section
                output_gallery = gr.Gallery(
                    label="Generated Variations",
                    columns=2,
                    rows=2,
                    height=700,
                    object_fit="contain",
                    show_label=True,
                    allow_preview=True,
                    preview=True
                )
                error_message = gr.Textbox(visible=False)
        
        with gr.Row(elem_classes="footer"):
            gr.Markdown("""
                ### Tips:
                - 📸 Upload any image to get started
                - 💡 Add an optional text prompt to guide the generation
                - 🎯 Adjust guidance scale to control prompt influence
                - ⚙️ Increase steps for higher quality
                - 🎲 Use seeds for reproducible results
            """)
    
    submit_btn.click(
        fn=process_request,
        inputs=[
            input_image,
            prompt,
            guidance,
            steps,
            num_images,
            seed,
            aspect_ratio
        ], 
        outputs=[output_gallery],
        show_progress=True
    )

# Launch the app
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",  # Listen on all network interfaces
        server_port=7860,       # Use a specific port
        share=False,             # Disable public URL sharing
    )