Spaces:
Runtime error
Runtime error
File size: 18,909 Bytes
49d4954 0ded2d6 fb9dbfc 29fa1d0 ac06db6 29fa1d0 fb9dbfc 49d4954 ac06db6 49d4954 0ded2d6 49d4954 1d4e763 49d4954 1d4e763 bc9137b 76678b6 ac06db6 76678b6 bc9137b 76678b6 bc9137b 76678b6 bc9137b 0f04459 76678b6 0f04459 76678b6 0f04459 76678b6 0f04459 76678b6 0f04459 76678b6 0f04459 76678b6 0f04459 ac06db6 4248210 bc9137b 76678b6 0f04459 ac06db6 0f04459 bc9137b 76678b6 bc9137b 76678b6 bc9137b 76678b6 bc9137b 76678b6 0f04459 76678b6 0f04459 76678b6 0f04459 76678b6 0f04459 76678b6 0ded2d6 76678b6 0ded2d6 49d4954 0f04459 49d4954 0ded2d6 0f04459 0ded2d6 76678b6 49d4954 76678b6 8e99946 49d4954 0f04459 76678b6 0f04459 76678b6 0f04459 49d4954 76678b6 0f04459 e152f3a 76678b6 0f04459 0ded2d6 76678b6 0f04459 49d4954 0f04459 76678b6 0f04459 49d4954 76678b6 0f04459 76678b6 8e99946 0f04459 8e99946 76678b6 8e99946 0f04459 8e99946 76678b6 0f04459 76678b6 0f04459 76678b6 8e99946 76678b6 8e99946 76678b6 49d4954 fb9dbfc 49d4954 bb47725 49d4954 d800f84 a349a7f d800f84 a349a7f d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 0ded2d6 d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe d800f84 4236cfe 0ded2d6 4236cfe d800f84 4236cfe d800f84 4236cfe 49d4954 d800f84 a349a7f d800f84 00a1ccb 8e99946 a349a7f d800f84 49d4954 bb47725 af7a5be 0ded2d6 bb47725 7ef91cf 49d4954 d800f84 49d4954 9217369 a899a5c 9217369 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 |
import gradio as gr
import torch
from PIL import Image
import os
from transformers import CLIPTokenizer, CLIPTextModel, AutoProcessor, T5EncoderModel, T5TokenizerFast
from diffusers import AutoencoderKL, FlowMatchEulerDiscreteScheduler
from flux.transformer_flux import FluxTransformer2DModel
from flux.pipeline_flux_chameleon import FluxPipeline
import torch.nn as nn
import math
import logging
import sys
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
from huggingface_hub import snapshot_download
# 设置日志
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(sys.stdout)
]
)
logger = logging.getLogger(__name__)
MODEL_ID = "Djrango/Qwen2vl-Flux"
MODEL_CACHE_DIR = "model_cache"
# 预下载所有模型
def download_models():
logger.info("Starting model download...")
try:
# 下载完整模型仓库
snapshot_download(
repo_id=MODEL_ID,
local_dir=MODEL_CACHE_DIR,
local_dir_use_symlinks=False
)
logger.info("Model download completed successfully")
except Exception as e:
logger.error(f"Error downloading models: {str(e)}")
raise
# 在脚本开始时下载模型
if not os.path.exists(MODEL_CACHE_DIR):
download_models()
# Add aspect ratio options
ASPECT_RATIOS = {
"1:1": (1024, 1024),
"16:9": (1344, 768),
"9:16": (768, 1344),
"2.4:1": (1536, 640),
"3:4": (896, 1152),
"4:3": (1152, 896),
}
class Qwen2Connector(nn.Module):
def __init__(self, input_dim=3584, output_dim=4096):
super().__init__()
self.linear = nn.Linear(input_dim, output_dim)
def forward(self, x):
return self.linear(x)
class FluxInterface:
def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
self.device = device
self.dtype = torch.bfloat16
self.models = None
self.MODEL_ID = "Djrango/Qwen2vl-Flux"
def load_models(self):
if self.models is not None:
return
logger.info("Starting model loading...")
# 1. 首先加载较小的模型到GPU
tokenizer = CLIPTokenizer.from_pretrained(os.path.join(MODEL_CACHE_DIR, "flux/tokenizer"))
text_encoder = CLIPTextModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder")
).to(self.dtype).to(self.device)
text_encoder_two = T5EncoderModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/text_encoder_2")
).to(self.dtype).to(self.device)
tokenizer_two = T5TokenizerFast.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/tokenizer_2"))
# 2. 将大模型加载到CPU,但保持bfloat16精度
vae = AutoencoderKL.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/vae")
).to(self.dtype).cpu()
transformer = FluxTransformer2DModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/transformer")
).to(self.dtype).cpu()
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "flux/scheduler"),
shift=1
)
# 3. Qwen2VL加载到CPU,保持bfloat16
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
os.path.join(MODEL_CACHE_DIR, "qwen2-vl")
).to(self.dtype).cpu()
# 4. 加载connector和embedder,保持bfloat16
connector = Qwen2Connector().to(self.dtype).cpu()
connector_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/connector.pt")
connector_state = torch.load(connector_path, map_location='cpu')
connector_state = {k.replace('module.', ''): v.to(self.dtype) for k, v in connector_state.items()}
connector.load_state_dict(connector_state)
self.t5_context_embedder = nn.Linear(4096, 3072).to(self.dtype).cpu()
t5_embedder_path = os.path.join(MODEL_CACHE_DIR, "qwen2-vl/t5_embedder.pt")
t5_embedder_state = torch.load(t5_embedder_path, map_location='cpu')
t5_embedder_state = {k: v.to(self.dtype) for k, v in t5_embedder_state.items()}
self.t5_context_embedder.load_state_dict(t5_embedder_state)
# 5. 设置所有模型为eval模式
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl,
connector, self.t5_context_embedder]:
model.requires_grad_(False)
model.eval()
logger.info("All models loaded successfully")
self.models = {
'tokenizer': tokenizer,
'text_encoder': text_encoder,
'text_encoder_two': text_encoder_two,
'tokenizer_two': tokenizer_two,
'vae': vae,
'transformer': transformer,
'scheduler': scheduler,
'qwen2vl': qwen2vl,
'connector': connector
}
self.qwen2vl_processor = AutoProcessor.from_pretrained(
self.MODEL_ID,
subfolder="qwen2-vl",
min_pixels=256*28*28,
max_pixels=256*28*28
)
self.pipeline = FluxPipeline(
transformer=transformer,
scheduler=scheduler,
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
)
def move_to_device(self, model, device):
"""Helper function to move model to specified device"""
if hasattr(model, 'to'):
return model.to(self.dtype).to(device)
return model
def process_image(self, image):
"""Process image with Qwen2VL model"""
try:
# 1. 将Qwen2VL相关模型移到GPU
logger.info("Moving Qwen2VL models to GPU...")
self.models['qwen2vl'] = self.models['qwen2vl'].to(self.device)
self.models['connector'] = self.models['connector'].to(self.device)
logger.info("Qwen2VL models moved to GPU")
message = [
{
"role": "user",
"content": [
{"type": "image", "image": image},
{"type": "text", "text": "Describe this image."},
]
}
]
text = self.qwen2vl_processor.apply_chat_template(
message,
tokenize=False,
add_generation_prompt=True
)
with torch.no_grad():
inputs = self.qwen2vl_processor(
text=[text],
images=[image],
padding=True,
return_tensors="pt"
).to(self.device)
output_hidden_state, image_token_mask, image_grid_thw = self.models['qwen2vl'](**inputs)
image_hidden_state = output_hidden_state[image_token_mask].view(1, -1, output_hidden_state.size(-1))
image_hidden_state = self.models['connector'](image_hidden_state)
# 保存结果到CPU
result = (image_hidden_state.cpu(), image_grid_thw)
# 2. 将Qwen2VL相关模型移回CPU
logger.info("Moving Qwen2VL models back to CPU...")
self.models['qwen2vl'] = self.models['qwen2vl'].cpu()
self.models['connector'] = self.models['connector'].cpu()
torch.cuda.empty_cache()
logger.info("Qwen2VL models moved to CPU and GPU cache cleared")
return result
except Exception as e:
logger.error(f"Error in process_image: {str(e)}")
raise
def resize_image(self, img, max_pixels=1050000):
if not isinstance(img, Image.Image):
img = Image.fromarray(img)
width, height = img.size
num_pixels = width * height
if num_pixels > max_pixels:
scale = math.sqrt(max_pixels / num_pixels)
new_width = int(width * scale)
new_height = int(height * scale)
new_width = new_width - (new_width % 8)
new_height = new_height - (new_height % 8)
img = img.resize((new_width, new_height), Image.LANCZOS)
return img
def compute_t5_text_embeddings(self, prompt):
"""Compute T5 embeddings for text prompt"""
if prompt == "":
return None
text_inputs = self.models['tokenizer_two'](
prompt,
padding="max_length",
max_length=256,
truncation=True,
return_tensors="pt"
).to(self.device)
prompt_embeds = self.models['text_encoder_two'](text_inputs.input_ids)[0]
prompt_embeds = self.t5_context_embedder.to(self.device)(prompt_embeds)
self.t5_context_embedder = self.t5_context_embedder.cpu()
return prompt_embeds
def compute_text_embeddings(self, prompt=""):
with torch.no_grad():
text_inputs = self.models['tokenizer'](
prompt,
padding="max_length",
max_length=77,
truncation=True,
return_tensors="pt"
).to(self.device)
prompt_embeds = self.models['text_encoder'](
text_inputs.input_ids,
output_hidden_states=False
)
pooled_prompt_embeds = prompt_embeds.pooler_output
return pooled_prompt_embeds
def generate(self, input_image, prompt="", guidance_scale=3.5,
num_inference_steps=28, num_images=2, seed=None, aspect_ratio="1:1"):
try:
logger.info(f"Starting generation with prompt: {prompt}")
if input_image is None:
raise ValueError("No input image provided")
if seed is not None:
torch.manual_seed(seed)
logger.info(f"Set random seed to: {seed}")
# 1. 使用Qwen2VL处理图像
logger.info("Processing input image with Qwen2VL...")
qwen2_hidden_state, image_grid_thw = self.process_image(input_image)
logger.info("Image processing completed")
# 2. 计算文本嵌入
logger.info("Computing text embeddings...")
pooled_prompt_embeds = self.compute_text_embeddings(prompt)
t5_prompt_embeds = self.compute_t5_text_embeddings(prompt)
logger.info("Text embeddings computed")
# 3. 将Transformer和VAE移到GPU
logger.info("Moving Transformer and VAE to GPU...")
self.models['transformer'] = self.models['transformer'].to(self.device)
self.models['vae'] = self.models['vae'].to(self.device)
# 更新pipeline中的模型引用
self.pipeline.transformer = self.models['transformer']
self.pipeline.vae = self.models['vae']
logger.info("Models moved to GPU")
# 获取维度
width, height = ASPECT_RATIOS[aspect_ratio]
logger.info(f"Using dimensions: {width}x{height}")
# 4. 生成图像
try:
logger.info("Starting image generation...")
output_images = self.pipeline(
prompt_embeds=qwen2_hidden_state.to(self.device).repeat(num_images, 1, 1),
pooled_prompt_embeds=pooled_prompt_embeds,
t5_prompt_embeds=t5_prompt_embeds.repeat(num_images, 1, 1) if t5_prompt_embeds is not None else None,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
height=height,
width=width,
).images
logger.info("Image generation completed")
# 5. 将Transformer和VAE移回CPU
logger.info("Moving models back to CPU...")
self.models['transformer'] = self.models['transformer'].cpu()
self.models['vae'] = self.models['vae'].cpu()
torch.cuda.empty_cache()
logger.info("Models moved to CPU and GPU cache cleared")
return output_images
except Exception as e:
raise RuntimeError(f"Error generating images: {str(e)}")
except Exception as e:
logger.error(f"Error during generation: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Initialize the interface
interface = FluxInterface()
def process_request(input_image, prompt="", guidance_scale=3.5, num_inference_steps=28, num_images=2, seed=None, aspect_ratio="1:1"):
"""主处理函数,直接处理用户请求"""
try:
if interface.models is None:
interface.load_models()
return interface.generate(
input_image=input_image,
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
num_images=num_images,
seed=seed,
aspect_ratio=aspect_ratio
)
except Exception as e:
logger.error(f"Error during generation: {str(e)}")
raise gr.Error(f"Generation failed: {str(e)}")
# Create Gradio interface
with gr.Blocks(
theme=gr.themes.Soft(),
css="""
.container {
max-width: 1200px;
margin: auto;
padding: 0 20px;
}
.header {
text-align: center;
margin: 20px 0 40px 0;
padding: 20px;
background: #f7f7f7;
border-radius: 12px;
}
.param-row {
padding: 10px 0;
}
footer {
margin-top: 40px;
padding: 20px;
border-top: 1px solid #eee;
}
"""
) as demo:
with gr.Column(elem_classes="container"):
gr.Markdown(
"""
<div class="header">
# 🎨 Qwen2vl-Flux Image Variation Demo
Generate creative variations of your images with optional text guidance
</div>
"""
)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
# Input Section
input_image = gr.Image(
label="Upload Your Image",
type="pil",
height=384,
sources=["upload", "clipboard"]
)
with gr.Accordion("Advanced Settings", open=False):
with gr.Group():
prompt = gr.Textbox(
label="Text Prompt (Optional)",
placeholder="As Long As Possible...",
lines=3
)
with gr.Row(elem_classes="param-row"):
guidance = gr.Slider(
minimum=1,
maximum=10,
value=3.5,
step=0.5,
label="Guidance Scale",
info="Higher values follow prompt more closely"
)
steps = gr.Slider(
minimum=1,
maximum=50,
value=28,
step=1,
label="Sampling Steps",
info="More steps = better quality but slower"
)
with gr.Row(elem_classes="param-row"):
num_images = gr.Slider(
minimum=1,
maximum=4,
value=2,
step=1,
label="Number of Images",
info="Generate multiple variations at once"
)
seed = gr.Number(
label="Random Seed",
value=None,
precision=0,
info="Set for reproducible results"
)
aspect_ratio = gr.Radio(
label="Aspect Ratio",
choices=["1:1", "16:9", "9:16", "2.4:1", "3:4", "4:3"],
value="1:1",
info="Choose aspect ratio for generated images"
)
submit_btn = gr.Button(
"🎨 Generate Variations",
variant="primary",
size="lg"
)
with gr.Column(scale=1):
# Output Section
output_gallery = gr.Gallery(
label="Generated Variations",
columns=2,
rows=2,
height=700,
object_fit="contain",
show_label=True,
allow_preview=True,
preview=True
)
error_message = gr.Textbox(visible=False)
with gr.Row(elem_classes="footer"):
gr.Markdown("""
### Tips:
- 📸 Upload any image to get started
- 💡 Add an optional text prompt to guide the generation
- 🎯 Adjust guidance scale to control prompt influence
- ⚙️ Increase steps for higher quality
- 🎲 Use seeds for reproducible results
""")
submit_btn.click(
fn=process_request,
inputs=[
input_image,
prompt,
guidance,
steps,
num_images,
seed,
aspect_ratio
],
outputs=[output_gallery],
show_progress=True
)
# Launch the app
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0", # Listen on all network interfaces
server_port=7860, # Use a specific port
share=False, # Disable public URL sharing
) |