Spaces:
Runtime error
Runtime error
erwold
commited on
Commit
·
bc9137b
1
Parent(s):
1d4e763
Initial Commit
Browse files
app.py
CHANGED
@@ -12,7 +12,9 @@ import logging
|
|
12 |
import sys
|
13 |
|
14 |
import os
|
15 |
-
|
|
|
|
|
16 |
|
17 |
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
|
18 |
|
@@ -57,123 +59,74 @@ class FluxInterface:
|
|
57 |
if self.models is not None:
|
58 |
return
|
59 |
|
60 |
-
import gc
|
61 |
-
torch.cuda.empty_cache()
|
62 |
-
gc.collect()
|
63 |
-
|
64 |
logger.info("Starting model loading...")
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
qwen2vl
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
self.t5_context_embedder.load_state_dict(t5_embedder_state)
|
133 |
-
self.t5_context_embedder = self.t5_context_embedder.to(self.device)
|
134 |
-
|
135 |
-
# 设置eval模式和关闭梯度
|
136 |
-
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]:
|
137 |
-
if hasattr(model, 'eval'):
|
138 |
-
model.eval()
|
139 |
-
if hasattr(model, 'requires_grad_'):
|
140 |
-
model.requires_grad_(False)
|
141 |
-
|
142 |
-
logger.info("Models loaded successfully")
|
143 |
-
|
144 |
-
self.models = {
|
145 |
-
'tokenizer': tokenizer,
|
146 |
-
'text_encoder': text_encoder,
|
147 |
-
'text_encoder_two': text_encoder_two,
|
148 |
-
'tokenizer_two': tokenizer_two,
|
149 |
-
'vae': vae,
|
150 |
-
'transformer': transformer,
|
151 |
-
'scheduler': scheduler,
|
152 |
-
'qwen2vl': qwen2vl,
|
153 |
-
'connector': connector
|
154 |
-
}
|
155 |
-
|
156 |
-
# 初始化processor和pipeline
|
157 |
-
self.qwen2vl_processor = AutoProcessor.from_pretrained(
|
158 |
-
self.MODEL_ID,
|
159 |
-
subfolder="qwen2-vl",
|
160 |
-
min_pixels=256*28*28,
|
161 |
-
max_pixels=256*28*28
|
162 |
-
)
|
163 |
-
|
164 |
-
self.pipeline = FluxPipeline(
|
165 |
-
transformer=transformer,
|
166 |
-
scheduler=scheduler,
|
167 |
-
vae=vae,
|
168 |
-
text_encoder=text_encoder,
|
169 |
-
tokenizer=tokenizer,
|
170 |
-
)
|
171 |
-
|
172 |
-
except Exception as e:
|
173 |
-
logger.error(f"Error loading models: {str(e)}")
|
174 |
-
torch.cuda.empty_cache()
|
175 |
-
gc.collect()
|
176 |
-
raise
|
177 |
|
178 |
def resize_image(self, img, max_pixels=1050000):
|
179 |
if not isinstance(img, Image.Image):
|
|
|
12 |
import sys
|
13 |
|
14 |
import os
|
15 |
+
# 设置环境变量,强制禁用 accelerate 的显存管理
|
16 |
+
os.environ["ACCELERATE_USE_MEMORY_EFFICIENT_ATTENTION"] = "false"
|
17 |
+
os.environ["ACCELERATE_DISABLE_MEMORY_EFFICIENT_ATTENTION"] = "1"
|
18 |
|
19 |
from qwen2_vl.modeling_qwen2_vl import Qwen2VLSimplifiedModel
|
20 |
|
|
|
59 |
if self.models is not None:
|
60 |
return
|
61 |
|
|
|
|
|
|
|
|
|
62 |
logger.info("Starting model loading...")
|
63 |
+
|
64 |
+
# Load FLUX components
|
65 |
+
tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
|
66 |
+
text_encoder = CLIPTextModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder").to(self.dtype).to(self.device)
|
67 |
+
text_encoder_two = T5EncoderModel.from_pretrained(self.MODEL_ID, subfolder="flux/text_encoder_2").to(self.dtype).to(self.device)
|
68 |
+
tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
|
69 |
+
|
70 |
+
# Load VAE and transformer
|
71 |
+
vae = AutoencoderKL.from_pretrained(self.MODEL_ID, subfolder="flux/vae").to(self.dtype).to(self.device)
|
72 |
+
transformer = FluxTransformer2DModel.from_pretrained(self.MODEL_ID, subfolder="flux/transformer").to(self.dtype).to(self.device)
|
73 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
|
74 |
+
|
75 |
+
# Load Qwen2VL components
|
76 |
+
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(self.MODEL_ID, subfolder="qwen2-vl").to(self.dtype).to(self.device)
|
77 |
+
|
78 |
+
# Load connector
|
79 |
+
connector = Qwen2Connector().to(self.dtype).to(self.device)
|
80 |
+
connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
|
81 |
+
connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location='cpu')
|
82 |
+
# Move state dict to dtype before loading
|
83 |
+
connector_state = {k: v.to(self.dtype) for k, v in connector_state.items()}
|
84 |
+
connector.load_state_dict(connector_state)
|
85 |
+
connector = connector.to(self.device)
|
86 |
+
|
87 |
+
# Load T5 embedder
|
88 |
+
self.t5_context_embedder = nn.Linear(4096, 3072).to(self.dtype).to(self.device)
|
89 |
+
t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
|
90 |
+
t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location='cpu')
|
91 |
+
# Move state dict to dtype before loading
|
92 |
+
t5_embedder_state = {k: v.to(self.dtype) for k, v in t5_embedder_state.items()}
|
93 |
+
self.t5_context_embedder.load_state_dict(t5_embedder_state)
|
94 |
+
self.t5_context_embedder = self.t5_context_embedder.to(self.device)
|
95 |
+
|
96 |
+
# Set models to eval mode
|
97 |
+
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]:
|
98 |
+
model.requires_grad_(False)
|
99 |
+
model.eval()
|
100 |
+
|
101 |
+
logger.info("All models loaded successfully")
|
102 |
+
|
103 |
+
self.models = {
|
104 |
+
'tokenizer': tokenizer,
|
105 |
+
'text_encoder': text_encoder,
|
106 |
+
'text_encoder_two': text_encoder_two,
|
107 |
+
'tokenizer_two': tokenizer_two,
|
108 |
+
'vae': vae,
|
109 |
+
'transformer': transformer,
|
110 |
+
'scheduler': scheduler,
|
111 |
+
'qwen2vl': qwen2vl,
|
112 |
+
'connector': connector
|
113 |
+
}
|
114 |
+
|
115 |
+
# Initialize processor and pipeline
|
116 |
+
self.qwen2vl_processor = AutoProcessor.from_pretrained(
|
117 |
+
self.MODEL_ID,
|
118 |
+
subfolder="qwen2-vl",
|
119 |
+
min_pixels=256*28*28,
|
120 |
+
max_pixels=256*28*28
|
121 |
+
)
|
122 |
+
|
123 |
+
self.pipeline = FluxPipeline(
|
124 |
+
transformer=transformer,
|
125 |
+
scheduler=scheduler,
|
126 |
+
vae=vae,
|
127 |
+
text_encoder=text_encoder,
|
128 |
+
tokenizer=tokenizer,
|
129 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
def resize_image(self, img, max_pixels=1050000):
|
132 |
if not isinstance(img, Image.Image):
|