Spaces:
Runtime error
Runtime error
erwold
commited on
Commit
·
1d4e763
1
Parent(s):
2d66916
Initial Commit
Browse files
app.py
CHANGED
|
@@ -54,126 +54,126 @@ class FluxInterface:
|
|
| 54 |
self.MODEL_ID = "Djrango/Qwen2vl-Flux"
|
| 55 |
|
| 56 |
def load_models(self):
|
| 57 |
-
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
| 61 |
-
torch.cuda.empty_cache()
|
| 62 |
-
gc.collect()
|
| 63 |
-
|
| 64 |
-
logger.info("Starting model loading...")
|
| 65 |
-
|
| 66 |
-
try:
|
| 67 |
-
# 1. 首先加载小型模型和tokenizer
|
| 68 |
-
tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
|
| 69 |
-
tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
|
| 70 |
-
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
|
| 71 |
-
|
| 72 |
-
# 2. 加载并优化CLIP text encoder
|
| 73 |
-
text_encoder = CLIPTextModel.from_pretrained(
|
| 74 |
-
self.MODEL_ID,
|
| 75 |
-
subfolder="flux/text_encoder",
|
| 76 |
-
torch_dtype=self.dtype,
|
| 77 |
-
device_map="auto" # 让模型自动管理显存
|
| 78 |
-
)
|
| 79 |
-
|
| 80 |
-
# 3. 加载T5 encoder
|
| 81 |
-
text_encoder_two = T5EncoderModel.from_pretrained(
|
| 82 |
-
self.MODEL_ID,
|
| 83 |
-
subfolder="flux/text_encoder_2",
|
| 84 |
-
torch_dtype=self.dtype,
|
| 85 |
-
device_map="auto"
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
-
# 清理一次显存
|
| 89 |
-
torch.cuda.empty_cache()
|
| 90 |
-
gc.collect()
|
| 91 |
-
|
| 92 |
-
# 4. 加载VAE
|
| 93 |
-
vae = AutoencoderKL.from_pretrained(
|
| 94 |
-
self.MODEL_ID,
|
| 95 |
-
subfolder="flux/vae",
|
| 96 |
-
torch_dtype=self.dtype,
|
| 97 |
-
device_map="auto"
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
# 5. 加载Transformer
|
| 101 |
-
transformer = FluxTransformer2DModel.from_pretrained(
|
| 102 |
-
self.MODEL_ID,
|
| 103 |
-
subfolder="flux/transformer",
|
| 104 |
-
torch_dtype=self.dtype,
|
| 105 |
-
device_map="auto"
|
| 106 |
-
)
|
| 107 |
-
|
| 108 |
-
# 再次清理显存
|
| 109 |
torch.cuda.empty_cache()
|
| 110 |
gc.collect()
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
|
| 178 |
def resize_image(self, img, max_pixels=1050000):
|
| 179 |
if not isinstance(img, Image.Image):
|
|
|
|
| 54 |
self.MODEL_ID = "Djrango/Qwen2vl-Flux"
|
| 55 |
|
| 56 |
def load_models(self):
|
| 57 |
+
if self.models is not None:
|
| 58 |
+
return
|
| 59 |
|
| 60 |
+
import gc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
torch.cuda.empty_cache()
|
| 62 |
gc.collect()
|
| 63 |
+
|
| 64 |
+
logger.info("Starting model loading...")
|
| 65 |
+
|
| 66 |
+
try:
|
| 67 |
+
# 1. 首先加载小型模型和tokenizer
|
| 68 |
+
tokenizer = CLIPTokenizer.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer")
|
| 69 |
+
tokenizer_two = T5TokenizerFast.from_pretrained(self.MODEL_ID, subfolder="flux/tokenizer_2")
|
| 70 |
+
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(self.MODEL_ID, subfolder="flux/scheduler", shift=1)
|
| 71 |
+
|
| 72 |
+
# 2. 加载并优化CLIP text encoder
|
| 73 |
+
text_encoder = CLIPTextModel.from_pretrained(
|
| 74 |
+
self.MODEL_ID,
|
| 75 |
+
subfolder="flux/text_encoder",
|
| 76 |
+
torch_dtype=self.dtype,
|
| 77 |
+
device_map="auto" # 让模型自动管理显存
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# 3. 加载T5 encoder
|
| 81 |
+
text_encoder_two = T5EncoderModel.from_pretrained(
|
| 82 |
+
self.MODEL_ID,
|
| 83 |
+
subfolder="flux/text_encoder_2",
|
| 84 |
+
torch_dtype=self.dtype,
|
| 85 |
+
device_map="auto"
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
# 清理一次显存
|
| 89 |
+
torch.cuda.empty_cache()
|
| 90 |
+
gc.collect()
|
| 91 |
+
|
| 92 |
+
# 4. 加载VAE
|
| 93 |
+
vae = AutoencoderKL.from_pretrained(
|
| 94 |
+
self.MODEL_ID,
|
| 95 |
+
subfolder="flux/vae",
|
| 96 |
+
torch_dtype=self.dtype,
|
| 97 |
+
device_map="auto"
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
# 5. 加载Transformer
|
| 101 |
+
transformer = FluxTransformer2DModel.from_pretrained(
|
| 102 |
+
self.MODEL_ID,
|
| 103 |
+
subfolder="flux/transformer",
|
| 104 |
+
torch_dtype=self.dtype,
|
| 105 |
+
device_map="auto"
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# 再次清理显存
|
| 109 |
+
torch.cuda.empty_cache()
|
| 110 |
+
gc.collect()
|
| 111 |
+
|
| 112 |
+
# 6. 加载Qwen2VL
|
| 113 |
+
qwen2vl = Qwen2VLSimplifiedModel.from_pretrained(
|
| 114 |
+
self.MODEL_ID,
|
| 115 |
+
subfolder="qwen2-vl",
|
| 116 |
+
torch_dtype=self.dtype,
|
| 117 |
+
device_map="auto"
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# 7. 加载其他小组件
|
| 121 |
+
connector = Qwen2Connector().to(self.dtype)
|
| 122 |
+
connector_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/connector.pt"
|
| 123 |
+
connector_state = torch.hub.load_state_dict_from_url(connector_path, map_location='cpu')
|
| 124 |
+
connector_state = {k: v.to(self.dtype) for k, v in connector_state.items()}
|
| 125 |
+
connector.load_state_dict(connector_state)
|
| 126 |
+
connector = connector.to(self.device)
|
| 127 |
|
| 128 |
+
self.t5_context_embedder = nn.Linear(4096, 3072).to(self.dtype)
|
| 129 |
+
t5_embedder_path = f"https://huggingface.co/{self.MODEL_ID}/resolve/main/qwen2-vl/t5_embedder.pt"
|
| 130 |
+
t5_embedder_state = torch.hub.load_state_dict_from_url(t5_embedder_path, map_location='cpu')
|
| 131 |
+
t5_embedder_state = {k: v.to(self.dtype) for k, v in t5_embedder_state.items()}
|
| 132 |
+
self.t5_context_embedder.load_state_dict(t5_embedder_state)
|
| 133 |
+
self.t5_context_embedder = self.t5_context_embedder.to(self.device)
|
| 134 |
+
|
| 135 |
+
# 设置eval模式和关闭梯度
|
| 136 |
+
for model in [text_encoder, text_encoder_two, vae, transformer, qwen2vl, connector, self.t5_context_embedder]:
|
| 137 |
+
if hasattr(model, 'eval'):
|
| 138 |
+
model.eval()
|
| 139 |
+
if hasattr(model, 'requires_grad_'):
|
| 140 |
+
model.requires_grad_(False)
|
| 141 |
+
|
| 142 |
+
logger.info("Models loaded successfully")
|
| 143 |
+
|
| 144 |
+
self.models = {
|
| 145 |
+
'tokenizer': tokenizer,
|
| 146 |
+
'text_encoder': text_encoder,
|
| 147 |
+
'text_encoder_two': text_encoder_two,
|
| 148 |
+
'tokenizer_two': tokenizer_two,
|
| 149 |
+
'vae': vae,
|
| 150 |
+
'transformer': transformer,
|
| 151 |
+
'scheduler': scheduler,
|
| 152 |
+
'qwen2vl': qwen2vl,
|
| 153 |
+
'connector': connector
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
# 初始化processor和pipeline
|
| 157 |
+
self.qwen2vl_processor = AutoProcessor.from_pretrained(
|
| 158 |
+
self.MODEL_ID,
|
| 159 |
+
subfolder="qwen2-vl",
|
| 160 |
+
min_pixels=256*28*28,
|
| 161 |
+
max_pixels=256*28*28
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
self.pipeline = FluxPipeline(
|
| 165 |
+
transformer=transformer,
|
| 166 |
+
scheduler=scheduler,
|
| 167 |
+
vae=vae,
|
| 168 |
+
text_encoder=text_encoder,
|
| 169 |
+
tokenizer=tokenizer,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
except Exception as e:
|
| 173 |
+
logger.error(f"Error loading models: {str(e)}")
|
| 174 |
+
torch.cuda.empty_cache()
|
| 175 |
+
gc.collect()
|
| 176 |
+
raise
|
| 177 |
|
| 178 |
def resize_image(self, img, max_pixels=1050000):
|
| 179 |
if not isinstance(img, Image.Image):
|